Analyzing the Small World Phenomenon Using a Hybrid Model with Local Network Flow (Extended Abstract)

Randomly generated graphs with power law degree distribution are typically used to model large real-world networks. These graphs have small average distance. However, the small world phenomenon includes both small average distance and the clustering effect, which is not possessed by random graphs. Here we use a hybrid model which combines a global graph (a random power law graph) with a local graph (a graph with high local connectivity defined by network flow). We present an efficient algorithm which extracts a local graph from a given realistic network. We show that the hybrid model is robust in the sense that for any graph generated by the hybrid model, the extraction algorithm approximately recovers the local graph.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  L. Lovász,et al.  Mengerian theorems for paths of bounded length , 1978 .

[3]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[4]  Bruce A. Reed,et al.  The Size of the Giant Component of a Random Graph with a Given Degree Sequence , 1998, Combinatorics, Probability and Computing.

[5]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[7]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[8]  PÁL és,et al.  Gráfok előírt fokú pontokkal , 2004 .

[9]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[10]  R. B. Azevedo,et al.  A power law for cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Éva Tardos,et al.  Fast Approximation Algorithms for Fractional Packing and Covering Problems , 1995, Math. Oper. Res..

[12]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[13]  F. Chung,et al.  The Diameter of Random Sparse Graphs , 2000 .

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  S. Krishna,et al.  A model for the emergence of cooperation, interdependence, and structure in evolving networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Kenneth L. Calvert,et al.  Modeling Internet topology , 1997, IEEE Commun. Mag..

[17]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[18]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[19]  Alan M. Frieze,et al.  A general model of web graphs , 2003, Random Struct. Algorithms.

[20]  Linyuan Lu,et al.  The Small World Phenomenon in Hybrid Power Law Graphs , 2004 .

[21]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[23]  C. Lee Giles,et al.  Efficient identification of Web communities , 2000, KDD '00.

[24]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[25]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[26]  Ravi Kumar,et al.  Extracting Large-Scale Knowledge Bases from the Web , 1999, VLDB.

[27]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[28]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[29]  Robert E. Tarjan,et al.  Graph Clustering and Minimum Cut Trees , 2004, Internet Math..

[30]  Geoffrey Exoo On line disjoint paths of bounded length , 1983, Discret. Math..

[31]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[32]  Alon Itai,et al.  The complexity of finding maximum disjoint paths with length constraints , 1982, Networks.

[33]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[34]  Linyuan Lu,et al.  The diameter of random massive graphs , 2001, SODA '01.

[35]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[36]  Fan Chung Graham,et al.  The Diameter of Sparse Random Graphs , 2001, Adv. Appl. Math..

[37]  Linyuan Lu,et al.  Random evolution in massive graphs , 2001 .

[38]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[39]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[40]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[41]  Jochen Könemann,et al.  Faster and simpler algorithms for multicommodity flow and other fractional packing problems , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[42]  Ellen W. Zegura,et al.  A quantitative comparison of graph-based models for Internet topology , 1997, TNET.

[43]  Christos H. Papadimitriou,et al.  Heuristically Optimized Trade-Offs: A New Paradigm for Power Laws in the Internet , 2002, ICALP.

[44]  Paul Erdös,et al.  On random graphs, I , 1959 .