Two more fermionic minimal models

[1]  D. Gaiotto,et al.  Orbifold groupoids , 2020, Journal of High Energy Physics.

[2]  M. Cheng,et al.  Relative anomaly in ( 1+1 )d rational conformal field theory , 2020, 2002.02984.

[3]  I. Runkel,et al.  Fermionic CFTs and classifying algebras , 2020, 2001.05055.

[4]  Po-Shen Hsin,et al.  Lorentz symmetry fractionalization and dualities in (2+1)d , 2019, SciPost Physics.

[5]  D. Tong,et al.  A web of 2d dualities: ${\bf Z}_2$ gauge fields and Arf invariants , 2019, SciPost Physics.

[6]  D. Tong,et al.  A web of 2d dualities: ${\bf Z}_2$ gauge fields and Arf invariants , 2019, SciPost Physics.

[7]  Yuji Tachikawa,et al.  On finite symmetries and their gauging in two dimensions , 2017, 1704.02330.

[8]  Zitao Wang,et al.  Fermionic symmetry protected topological phases and cobordisms , 2014, Journal of High Energy Physics.

[9]  C. Itzykson,et al.  The ADE Classification of Minimal and A J x ) Conformal Invariant Theories , 2005 .

[10]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[11]  P. Ruelle,et al.  Discrete symmetries of unitary minimal conformal theories , 1998, hep-th/9803129.

[12]  Cumrun Vafa,et al.  Quantum Symmetries of String Vacua , 1989 .

[13]  C. Itzykson,et al.  The A-D-E classification of minimal andA1(1) conformal invariant theories , 1987 .

[14]  Andrea Cappelli,et al.  Modular Invariant Partition Functions in Two-Dimensions , 1987 .

[15]  J. Cardy Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories , 1986 .

[16]  E. Witten,et al.  Spin structures in string theory , 1986 .

[17]  J. Zuber Discrete Symmetries of Conformal Theories , 1986 .

[18]  S. Shenker,et al.  Conformal Invariance, Unitarity and Two-Dimensional Critical Exponents , 1985 .

[19]  S. Shenker,et al.  Conformal invariance, unitarity, and critical exponents in two dimensions , 1984 .