A study of a new variant of the eccentric connectivity index for composite graphs

[1]  A. Maden,et al.  The upper bounds for multiplicative sum Zagreb index of some graph operations , 2017 .

[2]  B. Basavanagoud,et al.  A note on hyper-Zagreb coindex of graph operations , 2017 .

[3]  Lali Barrière,et al.  The generalized hierarchical product of graphs , 2009, Discret. Math..

[4]  Ante Graovac,et al.  Eccentric Connectivity Index of Hexagonal Belts and Chains , 2011 .

[5]  Ante Graovac,et al.  Note on the comparison of the first and second normalized zagreb eccentricity indices. , 2010, Acta chimica Slovenica.

[6]  Multiplicative sum Zagreb index of chain and chain-cycle graphs , 2019, Journal of Information and Optimization Sciences.

[7]  M. Azari Eccentric connectivity coindex under graph operations , 2019, J. Appl. Math. Comput..

[8]  Rao Li,et al.  The first zagreb index and some hamiltonian properties of the line graph of a graph , 2017 .

[9]  A. K. Madan,et al.  Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Studies , 1997, J. Chem. Inf. Comput. Sci..

[10]  A. Q. Baig,et al.  On modified eccentric connectivity index of nanotube , 2020 .

[11]  K. Pattabiraman,et al.  Reformulated Zagreb indices of vertex F-join graphs , 2020 .

[12]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[13]  Ali Iranmanesh,et al.  Some inequalities for the multiplicative sum Zagreb index of graph operations , 2015 .