Free-Stream Preserving Finite Difference Schemes for Ideal Magnetohydrodynamics on Curvilinear Meshes

In this paper, a high order free-stream preserving finite difference weighted essentially non-oscillatory (WENO) scheme is developed for the ideal magnetohydrodynamic (MHD) equations on curvilinear meshes. Under the constrained transport framework, magnetic potential evolved by a Hamilton–Jacobi (H–J) equation is introduced to control the divergence error. In this work, we use the alternative formulation of WENO scheme (Christlieb et al. in SIAM J Sci Comput 40(4):A2631–A2666, 2018) for the nonlinear hyperbolic conservation law, and design a novel method to solve the magnetic potential. Theoretical derivation and numerical results show that the scheme can preserve free-stream solutions of MHD equations, and reduce error more effectively than the standard finite difference WENO schemes for such problems.

[1]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[2]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[3]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[4]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[5]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[6]  Xiaodan Cai,et al.  Performance of WENO Scheme in Generalized Curvilinear Coordinate Systems , 2008 .

[7]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[8]  Xiao Feng,et al.  A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes , 2017, 2018 IEEE International Conference on Plasma Science (ICOPS).

[9]  Dinshaw S. Balsara Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics , 2009, J. Comput. Phys..

[10]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[11]  James A. Rossmanith,et al.  An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..

[12]  James A. Rossmanith,et al.  Finite difference weighted essentially non-oscillatory schemes with constrained transport for 2D ideal Magnetohydrodynamics , 2013, ICOPS 2013.

[13]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[14]  Yiqing Shen,et al.  E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO Scheme , 2012, J. Comput. Phys..

[15]  Taku Nonomura,et al.  Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids , 2010 .

[16]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[17]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[18]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[19]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[20]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[21]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[22]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[23]  Bertram Taetz,et al.  A High-Order Unstaggered Constrained-Transport Method for the Three-Dimensional Ideal Magnetohydrodynamic Equations Based on the Method of Lines , 2013, SIAM J. Sci. Comput..

[24]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[25]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[26]  Xiao Feng,et al.  A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations , 2015, J. Comput. Phys..

[27]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[28]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[29]  Bertram Taetz,et al.  An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations , 2010, J. Comput. Phys..

[30]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[31]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[32]  Yan Jiang,et al.  Free-stream preserving finite difference schemes on curvilinear meshes , 2014 .

[33]  Yan Jiang,et al.  An Alternative Formulation of Finite Difference Weighted ENO Schemes with Lax-Wendroff Time Discretization for Conservation Laws , 2013, SIAM J. Sci. Comput..

[34]  Kenneth G. Powell,et al.  Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results , 1994 .

[35]  Manuel Torrilhon,et al.  A Constrained Transport Upwind Scheme for Divergence-free Advection , 2003 .