Measures of Similarity Between Objects Based on Qualitative Shape Descriptions

Abstract A computational approach for comparing qualitative shape descriptions (QSDs) of objects within digital images is presented. First, the dissimilarity of qualitative features of shape is measured: (i) intuitively using conceptual neighborhood diagrams; and (ii) mathematically using interval distances. Then, a similarity measure between QSDs is defined and tested using images of different categories of the MPEG-7-CE-Shape-1 library, images of tiles used to build mosaics, and a collection of Clipart images. The results obtained show the effectiveness of the similarity measure defined, which is invariant to translations, rotations and scaling, and which implicitly manages deformation of shape parts and incompleteness.

[1]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[2]  Eliseo Clementini,et al.  A Global Framework for Qualitative Shape Description , 1997, GeoInformatica.

[3]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[4]  Longin Jan Latecki,et al.  Detection and recognition of contour parts based on shape similarity , 2008, Pattern Recognit..

[5]  Luis González Abril,et al.  2D qualitative shape matching applied to ceramic mosaic assembly , 2012, J. Intell. Manuf..

[6]  Donald D. Hoffman,et al.  Codon constraints on closed 2D shapes , 1985, Computer Vision Graphics and Image Processing.

[7]  Ulrich Eckhardt,et al.  Shape descriptors for non-rigid shapes with a single closed contour , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[8]  Ali Shokoufandeh,et al.  On the Representation and Matching of Qualitative Shape at Multiple Scales , 2002, ECCV.

[9]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[10]  Cecilio Angulo,et al.  Sobre núcleos, distancias y similitudes entre intervalos , 2007, Inteligencia Artif..

[11]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[12]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[13]  Stephen E. Palmer,et al.  Reference frames in the perception of shape and orientation , 1989 .

[14]  Sven J. Dickinson,et al.  From skeletons to bone graphs: Medial abstraction for object recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Sarah Lesher,et al.  Symbolic time-series analysis of neural data , 2000, Neurocomputing.

[16]  Björn Gottfried,et al.  Qualitative similarity measures - The case of two-dimensional outlines , 2008, Comput. Vis. Image Underst..

[17]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[18]  Alberto Del Bimbo,et al.  Retrieval by Shape Similarity with Perceptual Distance and Effective Indexing , 2000, IEEE Trans. Multim..

[19]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[20]  PaperNo Recognition of shapes by editing shock graphs , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[21]  Nico Van de Weghe,et al.  Qualitative polyline similarity testing with applications to query-by-sketch, indexing and classification , 2006, GIS '06.

[22]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[23]  Zoe Falomir,et al.  Describing Images Using Qualitative Models and Description Logics , 2011, Spatial Cogn. Comput..

[24]  LingHaibin,et al.  Shape Classification Using the Inner-Distance , 2007 .

[25]  Antony Galton,et al.  Qualitative Outline Theory , 1999, IJCAI.

[26]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[27]  Robert A. Wilson,et al.  Book Reviews: The MIT Encyclopedia of the Cognitive Sciences , 2000, CL.

[28]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[30]  Shimon Y. Nof,et al.  Editorial: Human-centered design of systems in honor of Professor Gavriel Salvendy , 2011, J. Intell. Manuf..

[31]  M. T. Escrig,et al.  Describing 2 D Objects by using Qualitative Models of Color and Shape at a Fine Level of Granularity , 2008 .

[32]  John S. Gero,et al.  A logic-based framework for shape representation , 1996, Comput. Aided Des..

[33]  John S. Gero,et al.  Representation and Reasoning about Shapes: Cognitive and Computational Studies in Visual Reasoning in Design , 1999, COSIT.

[34]  Michael Leyton,et al.  Shape as Memory Storage , 2004, Ambient Intelligence for Scientific Discovery.

[35]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[36]  Zoe Falomir,et al.  A Pragmatic Approach for Qualitative Shape and Qualitative Colour Similarity Matching , 2010, CCIA.

[37]  C. Bishop The MIT Encyclopedia of the Cognitive Sciences , 1999 .

[38]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[39]  Lledó Museros Cabedo,et al.  Automating assembly of ceramic mosaics using qualitative shape matching , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Otthein Herzog,et al.  Retrieving Shapes Efficiently by a Qualitative Shape Descriptor: The Scope Histogram , 2006, CIVR.

[41]  Philip N. Klein,et al.  Shock-Based Indexing into Large Shape Databases , 2002, ECCV.

[42]  Jitendra Malik,et al.  Shape contexts enable efficient retrieval of similar shapes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[43]  Christian Freksa,et al.  Qualitative spatial reasoning , 1990, Forschungsberichte, TU Munich.

[44]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Daphna Weinshall,et al.  Flexible Syntactic Matching of Curves , 1998, ECCV.

[46]  Pepe Siy,et al.  Robust shape similarity retrieval based on contour segmentation polygonal multiresolution and elastic matching , 2005, Pattern Recognit..

[47]  Luis González Abril,et al.  Ameva: An autonomous discretization algorithm , 2009, Expert Syst. Appl..

[48]  Björn Gottfried Shape from positional-contrast: characterising sketches with qualitative line arrangements , 2007, Bildwissenschaft.

[49]  Christian Freksa,et al.  Using Orientation Information for Qualitative Spatial Reasoning , 1992, Spatio-Temporal Reasoning.

[50]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[51]  D. Mark,et al.  Cognitive and Linguistic Aspects of Geographic Space: An Introduction , 1991 .

[52]  Longin Jan Latecki,et al.  Shape Similarity Measure Based on Correspondence of Visual Parts , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Anthony G. Cohn,et al.  A Hierarchical Representation of Qualitative Shape based on Connection and Convexity , 1995, COSIT.

[54]  Boaz J. Super,et al.  Fast correspondence-based system for shape retrieval, , 2004, Pattern Recognit. Lett..

[55]  Stewart Robinson,et al.  A statistical process control approach to selecting a warm-up period for a discrete-event simulation , 2007, Eur. J. Oper. Res..

[56]  Prasanna G. Mulgaonkar,et al.  Sticks, Plates, and Blobs: A Three-Dimensional Object Representation for Scene Analysis , 1980, AAAI.

[57]  Longin Jan Latecki,et al.  Multiscale Random Fields with Application to Contour Grouping , 2008, NIPS.