Characterization of unlabeled level planar trees

Consider a graph G with vertex set V in which each of the n vertices is assigned a number from the set {1,...,k} for some positive integer k. This assignment @f is a labeling if all k numbers are used. If @f does not assign adjacent vertices the same label, then @f forms a leveling that partitions V into k levels. If G has a planar drawing in which the y-coordinate of all vertices match their labels and edges are drawn strictly y-monotone, then G is level planar. In this paper, we consider the class of level trees that are level planar regardless of their labeling. We call such trees unlabeled level planar (ULP). Our contributions are three-fold. First, we describe which trees are ULP and provide linear-time level planar drawing algorithms for any labeling. Second, we characterize ULP trees in terms of forbidden subtrees so that any other tree must contain a subtree homeomorphic to one of these. Third, we provide a linear-time recognition algorithm for ULP trees.

[1]  Michael Kaufmann,et al.  Two Trees Which Are Self-intersecting When Drawn Simultaneously , 2005, Graph Drawing.

[2]  James Demmel,et al.  Prospectus for the Next LAPACK and ScaLAPACK Libraries , 2006, PARA.

[3]  G. Battista,et al.  Hierarchies and planarity theory , 1988, IEEE Trans. Syst. Man Cybern..

[4]  Ulrik Brandes,et al.  Communicating Centrality in Policy Network Drawings , 1999, IEEE Trans. Vis. Comput. Graph..

[5]  Stephen G. Kobourov,et al.  Minimum Level Nonplanar Patterns for Trees , 2007, GD.

[6]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Javier Cuenca,et al.  Designing polylibraries to speed up linear algebra computations , 2004, Int. J. High Perform. Comput. Netw..

[8]  Javier Cuenca,et al.  Heuristics for work distribution of a homogeneous parallel dynamic programming scheme on heterogeneous systems , 2004, Third International Symposium on Parallel and Distributed Computing/Third International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks.

[9]  Takahiro Katagiri,et al.  Effect of auto-tuning with user's knowledge for numerical software , 2004, CF '04.

[10]  Stephen G. Kobourov,et al.  Characterization of Unlabeled Level Planar Graphs , 2007, GD.

[11]  Javier Cuenca,et al.  Processes Distribution of Homogeneous Parallel Linear Algebra Routines on Heterogeneous Clusters , 2005, 2005 IEEE International Conference on Cluster Computing.

[12]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Directed Acyclic Graphs: Part I , 1999, SIAM J. Comput..

[13]  Michael Jünger,et al.  Simultaneous Geometric Graph Embeddings , 2007, GD.

[14]  Jack Dongarra,et al.  Automatic optimisation of parallel linear algebra routines in systems with variable load , 2003, Eleventh Euromicro Conference on Parallel, Distributed and Network-Based Processing, 2003. Proceedings..

[15]  Eric A. Brewer,et al.  Portable high-performance superconducting: high-level platform-dependent optimization , 1994 .

[16]  Michael Jünger,et al.  Pitfalls of Using PQ-Trees in Automatic Graph Drawing , 1997, GD.

[17]  Michael Jünger,et al.  Level Planar Embedding in Linear Time , 1999, Graph Drawing.

[18]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[19]  Joseph S. B. Mitchell,et al.  On Simultaneous Planar Graph Embeddings , 2003, WADS.

[20]  Stephen G. Kobourov,et al.  Characterization of Unlabeled Level Planar Trees , 2006, Graph Drawing.

[21]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[22]  David Eppstein,et al.  Separating Thickness from Geometric Thickness , 2002, GD.

[23]  Patrick Healy,et al.  A characterization of level planar graphs , 2004, Discret. Math..

[24]  Giuseppe Liotta,et al.  On the Parameterized Complexity of Layered Graph Drawing , 2001, Algorithmica.

[25]  Javier Cuenca,et al.  Using Experimental Data to Improve the Performance Modelling of Parallel Linear Algebra Routines , 2007, PPAM.

[26]  Javier Cuenca,et al.  Architecture of an automatically tuned linear algebra library , 2004, Parallel Comput..

[27]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[28]  Xuemin Lin,et al.  Straight-Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs , 1996, Graph Drawing.

[29]  Patrick Healy,et al.  Practical Level Planarity Testing and Layout with Embedding Constraints , 2007, Graph Drawing.

[30]  Peter S. Pacheco Parallel programming with MPI , 1996 .

[31]  Lenwood S. Heath,et al.  Recognizing Leveled-Planar Dags in Linear Time , 1995, Graph Drawing.

[32]  Michael Jünger,et al.  Level Planarity Testing in Linear Time , 1998, Graph Drawing.

[33]  Christian Bachmaier,et al.  Linear Time Planarity Testing and Embedding of Strongly Connected Cyclic Level Graphs , 2008, ESA.

[34]  Javier Cuenca,et al.  Modeling the behaviour of linear algebra algorithms with message-passing , 2001, Proceedings Ninth Euromicro Workshop on Parallel and Distributed Processing.

[35]  David Eppstein,et al.  The geometric thickness of low degree graphs , 2003, SCG '04.

[36]  Zizhong Chen,et al.  Self-adapting software for numerical linear algebra and LAPACK for clusters , 2003, Parallel Comput..

[37]  Patrick Healy,et al.  The Vertex-Exchange Graph: A New Concept for Multi-level Crossing Minimisation , 1999, GD.

[38]  Giuseppe Liotta,et al.  On the Parameterized Complexity of Layered Graph Drawing , 2001, ESA.

[39]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[40]  Domingo Giménez,et al.  Mapping in Heterogeneous Systems with Heuristic Methods , 2006, PARA.

[41]  F. Rodríguez Introducción a la programación paralela , 2008 .

[42]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[43]  Joseph S. B. Mitchell,et al.  On Simultaneous Graph Embedding , 2002, ArXiv.