Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon

[1]  M. Baloğlu,et al.  Genome-Wide Analysis of the bZIP Transcription Factors in Cucumber , 2014, PloS one.

[2]  Mario Pezzotti,et al.  Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera) , 2014, BMC Genomics.

[3]  Todd P. Michael,et al.  Analysis of Global Gene Expression in Brachypodium distachyon Reveals Extensive Network Plasticity in Response to Abiotic Stress , 2014, PloS one.

[4]  X. Deng,et al.  Maize membrane-bound transcription factor Zmbzip17 is a key regulator in the cross-talk of ER quality control and ABA signaling. , 2013, Plant & cell physiology.

[5]  Matthew R. Tucker,et al.  Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. , 2013, Journal of experimental botany.

[6]  Ge Gao,et al.  PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors , 2013, Nucleic Acids Res..

[7]  Yucheng Wang,et al.  The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis , 2013, BMC Plant Biology.

[8]  Henry D. Priest,et al.  Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon , 2013, BMC Biotechnology.

[9]  T. Gerats,et al.  Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops , 2013, Front. Plant Sci..

[10]  A. Keating,et al.  Networks of bZIP Protein-Protein Interactions Diversified Over a Billion Years of Evolution , 2013, Science.

[11]  Jian-ye Chen,et al.  Molecular characterization of a stress-response bZIP transcription factor in banana , 2013, Plant Cell, Tissue and Organ Culture (PCTOC).

[12]  Maojun Zhao,et al.  Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. , 2013, Physiologia plantarum.

[13]  D. Inzé,et al.  Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. , 2013, Molecular plant.

[14]  M. Otte,et al.  UPTAKE AND TRANSLOCATION OF TI FROM NANOPARTICLES IN CROPS AND WETLAND PLANTS , 2013, International journal of phytoremediation.

[15]  D. Gupta,et al.  Lead tolerance in plants: strategies for phytoremediation , 2013, Environmental Science and Pollution Research.

[16]  G. Sablok,et al.  Genome-Wide Landscape of Alternative Splicing Events in Brachypodium distachyon , 2013, DNA research : an international journal for rapid publication of reports on genes and genomes.

[17]  C. Fizames,et al.  Natural Variation at the FRD3 MATE Transporter Locus Reveals Cross-Talk between Fe Homeostasis and Zn Tolerance in Arabidopsis thaliana , 2012, PLoS genetics.

[18]  Tae-Ho Lee,et al.  PGDD: a database of gene and genome duplication in plants , 2012, Nucleic Acids Res..

[19]  D. Xie,et al.  Genome-Wide Analysis of bZIP-Encoding Genes in Maize , 2012, DNA research : an international journal for rapid publication of reports on genes and genomes.

[20]  B. Mohanty,et al.  Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints , 2012, BMC Genomics.

[21]  Ning Tang,et al.  Constitutive Activation of Transcription Factor OsbZIP46 Improves Drought Tolerance in Rice1[C][W][OA] , 2012, Plant Physiology.

[22]  Xiping Wang,et al.  bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice , 2011, Planta.

[23]  D. Ding,et al.  Identification of QTLs for Arsenic Accumulation in Maize (Zea mays L.) Using a RIL Population , 2011, PloS one.

[24]  J. Schroeder,et al.  Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. , 2011, Current opinion in plant biology.

[25]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[26]  Zhikang Li,et al.  Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice , 2011, BMC Genomics.

[27]  Ram Chandra,et al.  Phytoremediation of CD, CR, CU, MN, FE, NI, PB and ZN from Aqueous Solution Using Phragmites Cummunis, Typha Angustifolia and Cyperus Esculentus , 2011, International journal of phytoremediation.

[28]  S. Ramachandran,et al.  Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. , 2011, Journal of integrative plant biology.

[29]  Jingchu Luo,et al.  PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database , 2010, Nucleic Acids Res..

[30]  K. Shinozaki,et al.  'Omics' analyses of regulatory networks in plant abiotic stress responses. , 2010, Current opinion in plant biology.

[31]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[32]  Y. Li,et al.  Functional analysis of GbAGL1, a D-lineage gene from cotton (Gossypium barbadense) , 2010, Journal of experimental botany.

[33]  M. Estelle,et al.  Mechanism of auxin-regulated gene expression in plants. , 2009, Annual review of genetics.

[34]  K. Dietz,et al.  The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. , 2009, Gene.

[35]  G. Jürgens,et al.  Survival of the flexible: hormonal growth control and adaptation in plant development , 2009, Nature Reviews Genetics.

[36]  M. Bevan,et al.  A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21 , 2009, Nature Protocols.

[37]  S. Howell,et al.  Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. , 2008, Plant, cell & environment.

[38]  Diego Mauricio Riaño-Pachón,et al.  The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes , 2008, PloS one.

[39]  L. Hoffmann,et al.  Quantitative changes in protein expression of cadmium‐exposed poplar plants , 2008, Proteomics.

[40]  F. Nogueira,et al.  Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database , 2008, Plant Cell Reports.

[41]  Oscar N. Ruiz,et al.  Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. , 2007, Environmental science & technology.

[42]  Mukesh Jain,et al.  Genomic Survey and Gene Expression Analysis of the Basic Leucine Zipper Transcription Factor Family in Rice1[W][OA] , 2007, Plant Physiology.

[43]  W. Werr,et al.  The evolution of plant regulatory networks: what Arabidopsis cannot say for itself. , 2007, Current opinion in plant biology.

[44]  G. Galla,et al.  Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response. , 2007, Gene.

[45]  M. Walsh,et al.  Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation. , 2007, The Science of the total environment.

[46]  Y. Onodera,et al.  Synergism between RPBF Dof and RISBZ1 bZIP Activators in the Regulation of Rice Seed Expression Genes1[W] , 2006, Plant Physiology.

[47]  N. Tuteja,et al.  Cold, salinity and drought stresses: an overview. , 2005, Archives of biochemistry and biophysics.

[48]  V. Römheld,et al.  EFFECT OF THALLIUM FRACTIONS IN THE SOIL AND POLLUTION ORIGINS ON Tl UPTAKE BY HYPERACCUMULATOR PLANTS: A KEY FACTOR FOR THE ASSESSMENT OF PHYTOEXTRACTION , 2005, International journal of phytoremediation.

[49]  Terence Hwa,et al.  Substantial Regional Variation in Substitution Rates in the Human Genome: Importance of GC Content, Gene Density, and Telomere-Specific Effects , 2005, Journal of Molecular Evolution.

[50]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Steven B Cannon,et al.  The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana , 2004, BMC Plant Biology.

[52]  Jessica H. Fong,et al.  Predicting specificity in bZIP coiled-coil protein interactions , 2004, Genome Biology.

[53]  A. Keating,et al.  Comprehensive Identification of Human bZIP Interactions with Coiled-Coil Arrays , 2003, Science.

[54]  J. Meng,et al.  [MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data]. , 2003, Yi chuan = Hereditas.

[55]  C. Vinson,et al.  A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: amino acids I, V, L, N, A, and K. , 2002, Biochemistry.

[56]  C. Vinson,et al.  Classification of Human B-ZIP Proteins Based on Dimerization Properties , 2002, Molecular and Cellular Biology.

[57]  David Landsman,et al.  B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. , 2002, Genome research.

[58]  Jian-Kang Zhu,et al.  Cell Signaling during Cold, Drought, and Salt Stress Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.000596. , 2002, The Plant Cell Online.

[59]  E. Grotewold,et al.  MYB transcription factors in Arabidopsis. , 2002, Trends in plant science.

[60]  R. Sayre,et al.  Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation , 2002, Planta.

[61]  T. Lynch,et al.  The Arabidopsis Abscisic Acid Response Gene ABI5 Encodes a Basic Leucine Zipper Transcription Factor , 2000, Plant Cell.

[62]  Michael F. Thomashow,et al.  PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. , 1999, Annual review of plant physiology and plant molecular biology.

[63]  K. Struhl,et al.  The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α Helices: Crystal structure of the protein-DNA complex , 1992, Cell.

[64]  S. McKnight,et al.  Scissors-grip model for DNA recognition by a family of leucine zipper proteins. , 1989, Science.

[65]  L. Patthy,et al.  Intron‐dependent evolution: Preferred types of exons and introns , 1987, FEBS letters.

[66]  Xiping Wang,et al.  OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice , 2013, Plant Molecular Biology.

[67]  Tracey Ann Cuin,et al.  Plant Salt Tolerance , 2012, Methods in Molecular Biology.

[68]  Sjef Smeekens,et al.  Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs. , 2004, Nucleic acids research.

[69]  J. Riechmann bZIP transcription factors in Arabidopsis , 2002 .

[70]  F. Parcy,et al.  bZIP transcription factors in Arabidopsis The bZIP Research Group (Marc Jakoby et al.) , 2002 .

[71]  H. Hurst Transcription factors 1: bZIP proteins. , 1995, Protein profile.

[72]  H. Have,et al.  Zea mays L. , 1989 .