On the performances of parametric finite elements when geometry distortions occur
暂无分享,去创建一个
[1] S. Rajendran,et al. A technique to develop mesh-distortion immune finite elements , 2010 .
[2] Fumio Kikuchi,et al. Modification of the 8-node serendipity element , 1999 .
[3] D. G. Roddeman,et al. An a priori geometry check for a single isoparametric finite element , 1993 .
[4] K. Barrett,et al. Jacobians for isoparametric finite elements , 1996 .
[5] S. Kunimatsu,et al. The analysis of interpolation precision of quadrilateral elements , 2004 .
[6] E. Wachspress. High‐order curved finite elements , 1981 .
[7] I. Fried. Possible loss of accuracy in curved (isoparametric) finite elements-comment on a paper by henshell, walters and warburton , 1972 .
[8] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[9] A. Samuelsson,et al. On application of differential geometry to computational mechanics , 1997 .
[10] K. Bathe,et al. Effects of element distortions on the performance of isoparametric elements , 1993 .
[11] John Robinson. CRE method of element testing and the Jacobian shape parameters , 1987 .
[12] L. Nash Gifford. More on distorted isoparametric elements , 1979 .
[13] Keith O. Geddes,et al. Maple V Programming Guide , 1996 .
[14] J. Goldak,et al. A DISTORTION METRIC FOR ISOPARAMETRIC FINITE ELEMENTS , 1988 .
[15] T. A. Porsching,et al. Some results on the global inversion of bilinear and quadratic isoparametric finite element transformations , 1978 .
[16] Jan Bäcklund. On isoparametric elements , 1978 .
[17] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[18] P. G. Ciarlet,et al. Interpolation theory over curved elements, with applications to finite element methods , 1972 .
[19] Francesco Ubertini,et al. Adaptivity based on the recovery by compatibility in patches , 2010 .
[20] Klaus-Jürgen Bathe,et al. Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .
[21] P. M. Knupp. On the ivertability of the isoparametric map , 1990 .
[22] Bruno Buchberger,et al. Gröbner Bases: A Short Introduction for Systems Theorists , 2001, EUROCAST.
[23] K. Bathe. Finite Element Procedures , 1995 .
[24] J. Robinson. Some new distortion measures for quadrilaterals , 1987 .
[25] J. A. Stricklin,et al. On isoparametricvs linear strain triangular elements , 1977 .
[26] John Robinson. An evaluation of skew sensitivity of thirty three plate bending elements in nineteen FEM systems , 1985 .
[27] J. Z. Zhu,et al. The finite element method , 1977 .
[28] John Robinson,et al. Distortion measures for quadrilaterals with curved boundaries , 1988 .
[29] P. Knupp. Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .
[30] Robert L. Harder,et al. Eight nodes or nine , 1992 .
[31] Alf Samuelsson,et al. Distortion measures and inverse mapping for isoparametric 8τnode plane finite elements with curved boundaries , 1998 .
[32] R. D. Henshell,et al. On possible loss of accuracy in curved finite elements , 1972 .
[33] Giovanni Castellazzi. Verification in computational structural mechanics: recovery-based a posteriori error estimation , 2007 .
[34] D. A. Field. Qualitative measures for initial meshes , 2000 .
[35] Ashraf El-Hamalawi,et al. A simple and effective element distortion factor , 2000 .
[36] J. Barlow. More on optimal stress points—reduced integration, element distortions and error estimation , 1989 .