On the performances of parametric finite elements when geometry distortions occur

Parametric finite elements can lose their performance when distortions of the element geometry arise. Geometry distortions cause global co-ordinates to be non-linear functions of local co-ordinates when described through the co-ordinate transformation. This transformation is ruled by the inverse of the Jacobian matrix. In this paper a new method to investigate the effects of element distortions on the performance of parametric finite elements is presented. By inspecting analytically the Jacobian matrix, the proposed method investigates, on a rational basis, the relation between distortions and the interpolating functions of parametric finite elements. Common examples are employed to test the accuracy of the information provided by the method. Comparison with extant methods confirm the ability of the proposed technique to give useful information about the performance of an investigated element when geometry distortions occur.

[1]  S. Rajendran,et al.  A technique to develop mesh-distortion immune finite elements , 2010 .

[2]  Fumio Kikuchi,et al.  Modification of the 8-node serendipity element , 1999 .

[3]  D. G. Roddeman,et al.  An a priori geometry check for a single isoparametric finite element , 1993 .

[4]  K. Barrett,et al.  Jacobians for isoparametric finite elements , 1996 .

[5]  S. Kunimatsu,et al.  The analysis of interpolation precision of quadrilateral elements , 2004 .

[6]  E. Wachspress High‐order curved finite elements , 1981 .

[7]  I. Fried Possible loss of accuracy in curved (isoparametric) finite elements-comment on a paper by henshell, walters and warburton , 1972 .

[8]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[9]  A. Samuelsson,et al.  On application of differential geometry to computational mechanics , 1997 .

[10]  K. Bathe,et al.  Effects of element distortions on the performance of isoparametric elements , 1993 .

[11]  John Robinson CRE method of element testing and the Jacobian shape parameters , 1987 .

[12]  L. Nash Gifford More on distorted isoparametric elements , 1979 .

[13]  Keith O. Geddes,et al.  Maple V Programming Guide , 1996 .

[14]  J. Goldak,et al.  A DISTORTION METRIC FOR ISOPARAMETRIC FINITE ELEMENTS , 1988 .

[15]  T. A. Porsching,et al.  Some results on the global inversion of bilinear and quadratic isoparametric finite element transformations , 1978 .

[16]  Jan Bäcklund On isoparametric elements , 1978 .

[17]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[18]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[19]  Francesco Ubertini,et al.  Adaptivity based on the recovery by compatibility in patches , 2010 .

[20]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[21]  P. M. Knupp On the ivertability of the isoparametric map , 1990 .

[22]  Bruno Buchberger,et al.  Gröbner Bases: A Short Introduction for Systems Theorists , 2001, EUROCAST.

[23]  K. Bathe Finite Element Procedures , 1995 .

[24]  J. Robinson Some new distortion measures for quadrilaterals , 1987 .

[25]  J. A. Stricklin,et al.  On isoparametricvs linear strain triangular elements , 1977 .

[26]  John Robinson An evaluation of skew sensitivity of thirty three plate bending elements in nineteen FEM systems , 1985 .

[27]  J. Z. Zhu,et al.  The finite element method , 1977 .

[28]  John Robinson,et al.  Distortion measures for quadrilaterals with curved boundaries , 1988 .

[29]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[30]  Robert L. Harder,et al.  Eight nodes or nine , 1992 .

[31]  Alf Samuelsson,et al.  Distortion measures and inverse mapping for isoparametric 8τnode plane finite elements with curved boundaries , 1998 .

[32]  R. D. Henshell,et al.  On possible loss of accuracy in curved finite elements , 1972 .

[33]  Giovanni Castellazzi Verification in computational structural mechanics: recovery-based a posteriori error estimation , 2007 .

[34]  D. A. Field Qualitative measures for initial meshes , 2000 .

[35]  Ashraf El-Hamalawi,et al.  A simple and effective element distortion factor , 2000 .

[36]  J. Barlow More on optimal stress points—reduced integration, element distortions and error estimation , 1989 .