Moments of isotropic measures and optimal projective codes

In this paper, we use the linear programming approach to find new upper bounds for the moments of isotropic measures. These bounds are then utilized for finding lower packing bounds and energy bounds for projective codes. We also show that the obtained energy bounds are sharp for several infinite families of codes.

[1]  Henry Cohn,et al.  The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[2]  Eric Goodman,et al.  Universal optimal configurations for the p-frame potentials , 2019, Advances in Computational Mathematics.

[3]  Peter G. Casazza,et al.  Every Hilbert space frame has a Naimark complement , 2011, 1104.0810.

[4]  Henry Cohn,et al.  Universal optimality of the $E_8$ and Leech lattices and interpolation formulas , 2019, Annals of Mathematics.

[5]  Nikolay N. Andreev,et al.  An Extremal Property Of The Icosahedron , 1996 .

[6]  F. Lukács Verschärfung des ersten Mittelwertsatzes der Integralrechnung für rationale Polynome , 1918 .

[7]  Boris Bukh,et al.  Nearly orthogonal vectors and small antipodal spherical codes , 2018, Israel Journal of Mathematics.

[9]  I. J. Schoenberg Positive definite functions on spheres , 1942 .

[10]  Yufei Zhao,et al.  SPHERE PACKING BOUNDS VIA SPHERICAL CODES , 2012, 1212.5966.

[11]  Akihiro Munemasa,et al.  The nonexistence of certain tight spherical designs , 2005 .

[12]  Yu. I. Lyubich On tight projective designs , 2009, Des. Codes Cryptogr..

[13]  Christine Bachoc,et al.  Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps , 2009, Eur. J. Comb..

[14]  Wei-Hsuan Yu,et al.  Upper bounds for $s$-distance sets and equiangular lines , 2016, 1611.09479.

[15]  P. Tammes On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .

[16]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[17]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[18]  Dustin G. Mixon,et al.  A Delsarte-Style Proof of the Bukh–Cox Bound , 2019, 2019 13th International conference on Sampling Theory and Applications (SampTA).

[19]  J. Seidel Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3 , 1968 .

[20]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[21]  William R. Smith,et al.  Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .

[22]  V. A. Yudin,et al.  Extremal dispositions of points on the sphere , 1997 .

[23]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[24]  Alexander Barg,et al.  Bounds on ordered codes and orthogonal arrays , 2007, 2007 IEEE International Symposium on Information Theory.

[25]  J. J. Seidel,et al.  The regular two-graph on 276 vertices , 1975, Discret. Math..

[26]  Mark A. Taylor Cubature for the sphere and the discrete spherical harmonic transform , 1995 .

[27]  Richard Evan Schwartz,et al.  The Five-Electron Case of Thomson’s Problem , 2013, Exp. Math..

[28]  D. Gale 15. Neighboring Vertices on a Convex Polyhedron , 1957 .

[29]  Henry Cohn,et al.  Three-point bounds for energy minimization , 2011, 1103.0485.

[30]  R. Schwartz The Phase Transition in 5 Point Energy Minimization , 2016, 1610.03303.

[31]  Christopher A. Fuchs,et al.  The SIC Question: History and State of Play , 2017, Axioms.

[32]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[33]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[34]  Achill Schürmann,et al.  Experimental Study of Energy-Minimizing Point Configurations on Spheres , 2009, Exp. Math..

[35]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[36]  F. Vallentin,et al.  Upper bounds for packings of spheres of several radii , 2012, Forum of Mathematics, Sigma.

[37]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[38]  Henry Cohn,et al.  Optimality and uniqueness of the Leech lattice among lattices , 2004, math/0403263.

[39]  V. Levenshtein Designs as maximum codes in polynomial metric spaces , 1992 .

[40]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[41]  P. Delsarte Bounds for unrestricted codes, by linear programming , 1972 .

[42]  Michael Goldberg Stability Configurations of Electrons on a Sphere , 1969 .

[43]  O. Musin Bounds for codes by semidefinite programming , 2006, math/0609155.

[44]  Blake C. Stacey Equiangular Lines , 2021, A First Course in the Sporadic SICs.

[45]  V. Paulsen,et al.  Optimal frames for erasures , 2004 .

[46]  L. Föppl,et al.  Stabile Anordnungen von Elektronen im Atom. , 1912 .

[47]  Oleg R. Musin Multivariate positive definite functions on spheres , 2013, Discrete Geometry and Algebraic Combinatorics.

[48]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[49]  Henry Cohn,et al.  Optimal simplices and codes in projective spaces , 2013, 1308.3188.

[50]  Alexander Schrijver,et al.  New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.

[51]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[52]  Christine Bachoc Linear programming bounds for codes in grassmannian spaces , 2006, IEEE Transactions on Information Theory.

[53]  Kurt M. Anstreicher The Thirteen Spheres: A New Proof , 2004, Discret. Comput. Geom..

[54]  O. Musin The kissing number in four dimensions , 2003, math/0309430.

[55]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[56]  D. Eisenbud,et al.  The Projective Geometry of the Gale Transform , 1998, math/9807127.

[57]  L. L. Whyte Unique Arrangements of Points on a Sphere , 1952 .

[58]  P. Seymour,et al.  Averaging sets: A generalization of mean values and spherical designs , 1984 .

[59]  Alexander Schrijver,et al.  Invariant Semidefinite Programs , 2010, 1007.2905.

[60]  A. A. Makhnev On the Nonexistence of Strongly Regular Graphs with Parameters (486, 165, 36, 66) , 2002 .

[61]  M. Ehler,et al.  Minimization of the probabilistic p-frame potential , 2010, 1101.0140.

[62]  S. Smale Mathematical problems for the next century , 1998 .

[63]  Oleg R. Musin The Kissing Problem in Three Dimensions , 2006, Discret. Comput. Geom..

[64]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[65]  Alexander Barg,et al.  Finite two-distance tight frames , 2014, 1402.3521.

[66]  Gabriele Nebe,et al.  On tight spherical designs , 2012, 1201.1830.

[67]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[68]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[69]  Point Sets and Allied Cremona Groups. , 1915, Proceedings of the National Academy of Sciences of the United States of America.

[70]  P. Casazza,et al.  Robustness of Fusion Frames under Erasures of Subspaces and of Local Frame Vectors , 2007 .

[71]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[72]  David Marcus Appleby,et al.  Tight frames, Hadamard matrices and Zauner’s conjecture , 2019, Journal of Physics A: Mathematical and Theoretical.