Moments of isotropic measures and optimal projective codes
暂无分享,去创建一个
[1] Henry Cohn,et al. The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.
[2] Eric Goodman,et al. Universal optimal configurations for the p-frame potentials , 2019, Advances in Computational Mathematics.
[3] Peter G. Casazza,et al. Every Hilbert space frame has a Naimark complement , 2011, 1104.0810.
[4] Henry Cohn,et al. Universal optimality of the $E_8$ and Leech lattices and interpolation formulas , 2019, Annals of Mathematics.
[5] Nikolay N. Andreev,et al. An Extremal Property Of The Icosahedron , 1996 .
[6] F. Lukács. Verschärfung des ersten Mittelwertsatzes der Integralrechnung für rationale Polynome , 1918 .
[7] Boris Bukh,et al. Nearly orthogonal vectors and small antipodal spherical codes , 2018, Israel Journal of Mathematics.
[9] I. J. Schoenberg. Positive definite functions on spheres , 1942 .
[10] Yufei Zhao,et al. SPHERE PACKING BOUNDS VIA SPHERICAL CODES , 2012, 1212.5966.
[11] Akihiro Munemasa,et al. The nonexistence of certain tight spherical designs , 2005 .
[12] Yu. I. Lyubich. On tight projective designs , 2009, Des. Codes Cryptogr..
[13] Christine Bachoc,et al. Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps , 2009, Eur. J. Comb..
[14] Wei-Hsuan Yu,et al. Upper bounds for $s$-distance sets and equiangular lines , 2016, 1611.09479.
[15] P. Tammes. On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .
[16] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[17] Mátyás A. Sustik,et al. On the existence of equiangular tight frames , 2007 .
[18] Dustin G. Mixon,et al. A Delsarte-Style Proof of the Bukh–Cox Bound , 2019, 2019 13th International conference on Sampling Theory and Applications (SampTA).
[19] J. Seidel. Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3 , 1968 .
[20] P. Delsarte. AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .
[21] William R. Smith,et al. Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .
[22] V. A. Yudin,et al. Extremal dispositions of points on the sphere , 1997 .
[23] Pablo A. Parrilo,et al. Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[24] Alexander Barg,et al. Bounds on ordered codes and orthogonal arrays , 2007, 2007 IEEE International Symposium on Information Theory.
[25] J. J. Seidel,et al. The regular two-graph on 276 vertices , 1975, Discret. Math..
[26] Mark A. Taylor. Cubature for the sphere and the discrete spherical harmonic transform , 1995 .
[27] Richard Evan Schwartz,et al. The Five-Electron Case of Thomson’s Problem , 2013, Exp. Math..
[28] D. Gale. 15. Neighboring Vertices on a Convex Polyhedron , 1957 .
[29] Henry Cohn,et al. Three-point bounds for energy minimization , 2011, 1103.0485.
[30] R. Schwartz. The Phase Transition in 5 Point Energy Minimization , 2016, 1610.03303.
[31] Christopher A. Fuchs,et al. The SIC Question: History and State of Play , 2017, Axioms.
[32] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[33] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[34] Achill Schürmann,et al. Experimental Study of Energy-Minimizing Point Configurations on Spheres , 2009, Exp. Math..
[35] J. Seidel,et al. SPHERICAL CODES AND DESIGNS , 1991 .
[36] F. Vallentin,et al. Upper bounds for packings of spheres of several radii , 2012, Forum of Mathematics, Sigma.
[37] N. J. A. Sloane,et al. New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.
[38] Henry Cohn,et al. Optimality and uniqueness of the Leech lattice among lattices , 2004, math/0403263.
[39] V. Levenshtein. Designs as maximum codes in polynomial metric spaces , 1992 .
[40] C. Bachoc,et al. New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.
[41] P. Delsarte. Bounds for unrestricted codes, by linear programming , 1972 .
[42] Michael Goldberg. Stability Configurations of Electrons on a Sphere , 1969 .
[43] O. Musin. Bounds for codes by semidefinite programming , 2006, math/0609155.
[44] Blake C. Stacey. Equiangular Lines , 2021, A First Course in the Sporadic SICs.
[45] V. Paulsen,et al. Optimal frames for erasures , 2004 .
[46] L. Föppl,et al. Stabile Anordnungen von Elektronen im Atom. , 1912 .
[47] Oleg R. Musin. Multivariate positive definite functions on spheres , 2013, Discrete Geometry and Algebraic Combinatorics.
[48] N. J. A. Sloane,et al. Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..
[49] Henry Cohn,et al. Optimal simplices and codes in projective spaces , 2013, 1308.3188.
[50] Alexander Schrijver,et al. New code upper bounds from the Terwilliger algebra and semidefinite programming , 2005, IEEE Transactions on Information Theory.
[51] P. Casazza,et al. Frames of subspaces , 2003, math/0311384.
[52] Christine Bachoc. Linear programming bounds for codes in grassmannian spaces , 2006, IEEE Transactions on Information Theory.
[53] Kurt M. Anstreicher. The Thirteen Spheres: A New Proof , 2004, Discret. Comput. Geom..
[54] O. Musin. The kissing number in four dimensions , 2003, math/0309430.
[55] Yurii Nesterov,et al. Squared Functional Systems and Optimization Problems , 2000 .
[56] D. Eisenbud,et al. The Projective Geometry of the Gale Transform , 1998, math/9807127.
[57] L. L. Whyte. Unique Arrangements of Points on a Sphere , 1952 .
[58] P. Seymour,et al. Averaging sets: A generalization of mean values and spherical designs , 1984 .
[59] Alexander Schrijver,et al. Invariant Semidefinite Programs , 2010, 1007.2905.
[60] A. A. Makhnev. On the Nonexistence of Strongly Regular Graphs with Parameters (486, 165, 36, 66) , 2002 .
[61] M. Ehler,et al. Minimization of the probabilistic p-frame potential , 2010, 1101.0140.
[62] S. Smale. Mathematical problems for the next century , 1998 .
[63] Oleg R. Musin. The Kissing Problem in Three Dimensions , 2006, Discret. Comput. Geom..
[64] Robert J. McEliece,et al. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.
[65] Alexander Barg,et al. Finite two-distance tight frames , 2014, 1402.3521.
[66] Gabriele Nebe,et al. On tight spherical designs , 2012, 1201.1830.
[67] E. Saff,et al. Distributing many points on a sphere , 1997 .
[68] Henry Cohn,et al. New upper bounds on sphere packings I , 2001, math/0110009.
[69] Point Sets and Allied Cremona Groups. , 1915, Proceedings of the National Academy of Sciences of the United States of America.
[70] P. Casazza,et al. Robustness of Fusion Frames under Erasures of Subspaces and of Local Frame Vectors , 2007 .
[71] Lloyd R. Welch,et al. Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[72] David Marcus Appleby,et al. Tight frames, Hadamard matrices and Zauner’s conjecture , 2019, Journal of Physics A: Mathematical and Theoretical.