Large-scale integration of semiconductor nanowires for high-performance flexible electronics.

High-performance flexible electronics has attracted much attention in recent years due to potential applications in flexible displays, artificial skin, radio frequency identification, sensor tapes, etc. Various materials such as organic and inorganic semiconductor nanowires, carbon nanotubes, graphene, etc. have been explored as the active semiconductor components for flexible devices. Among them, inorganic semiconductor nanowires are considered as highly promising materials due to their relatively high carrier mobility, reliable control on geometry and electronic properties, and cost-effective synthesis processes. In this review, recent progress on the assembly of high-performance inorganic semiconductor nanowires and their applications for large-scale flexible electronics will be summarized. In particular, nanowire-based integrated circuitry and high-frequency electronics will be highlighted.

[1]  Ning Han,et al.  Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates , 2011, Nanotechnology.

[2]  Y. Yeh,et al.  Hydrogenated Amorphous Silicon Solar Cells on Textured Flexible Substrate Copied From a Textured Glass Substrate Template , 2011, IEEE Electron Device Letters.

[3]  Xiaolin Zheng,et al.  Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. , 2011, Nano letters.

[4]  Hyoungsub Kim,et al.  Hybrid ZnO nanowire networked field-effect transistor with solution-processed InGaZnO film , 2011 .

[5]  Michael C. McAlpine,et al.  Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. , 2011, Nano letters.

[6]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[7]  Feng Xu,et al.  Strain-release assembly of nanowires on stretchable substrates. , 2011, ACS nano.

[8]  Chongwu Zhou,et al.  Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes. , 2011, ACS nano.

[9]  One-dimensional semiconductor nanostructure based thin-film partial composite formed by transfer implantation for high-performance flexible and printable electronics at low temperature. , 2011, ACS nano.

[10]  Wei Lu,et al.  Controlled 3D buckling of silicon nanowires for stretchable electronics. , 2011, ACS nano.

[11]  J. Ha,et al.  White‐Light Emitting Diode Array of p+‐Si/Aligned n‐SnO2 Nanowires Heterojunctions , 2011 .

[12]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[13]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[14]  Zhiyong Fan,et al.  Parallel Array Inas Nanowire Transistors for Mechanically Bendable, Ultrahigh Frequency Electronics , 2022 .

[15]  Sigurd Wagner,et al.  Self-Aligned Amorphous Silicon Thin-Film Transistors Fabricated on Clear Plastic at 300 $^{\circ}\hbox{C}$ , 2010, IEEE Transactions on Electron Devices.

[16]  Franz-Josef Tegude,et al.  High-Frequency Measurements on InAs Nanowire Field-Effect Transistors Using Coplanar Waveguide Contacts , 2010, IEEE Transactions on Nanotechnology.

[17]  Xiangfeng Duan,et al.  High-yield self-limiting single-nanowire assembly with dielectrophoresis. , 2010, Nature nanotechnology.

[18]  Xiaolin Zheng,et al.  Fabricating nanowire devices on diverse substrates by simple transfer-printing methods , 2010, Proceedings of the National Academy of Sciences.

[19]  L. Clark,et al.  Flexible amorphous‐silicon non‐volatile memory , 2010 .

[20]  Zhiyong Fan,et al.  Palladium/silicon nanowire Schottky barrier-based hydrogen sensors , 2010 .

[21]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[22]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[23]  C. Sow,et al.  Aligned Tin Oxide Nanonets for High-Performance Transistors , 2010 .

[24]  F. Xia,et al.  Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. , 2010, Nano letters.

[25]  J. Petta,et al.  Correlating the nanostructure and electronic properties of InAs nanowires. , 2009, Nano letters.

[26]  Kian Ping Loh,et al.  High mobility, printable, and solution-processed graphene electronics. , 2010, Nano letters.

[27]  Donhee Ham,et al.  Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits , 2009, Proceedings of the National Academy of Sciences.

[28]  Po-Chiang Chen,et al.  High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. , 2009, ACS nano.

[29]  A. Javey,et al.  Toward the Development of Printable Nanowire Electronics and Sensors , 2009 .

[30]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[31]  F. Hong,et al.  The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing , 2009, Nanotechnology.

[32]  GaAs MESFET With a High-Mobility Self-Assembled Planar Nanowire Channel , 2009, IEEE Electron Device Letters.

[33]  Byron D. Gates,et al.  Directed assembly of nanowires , 2009 .

[34]  P. Yang,et al.  Langmuir—Blodgettry of Nanocrystals and Nanowires , 2009 .

[35]  Po-Chiang Chen,et al.  A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination , 2009, Nanotechnology.

[36]  Zhiyong Fan,et al.  Monolayer resist for patterned contact printing of aligned nanowire arrays. , 2009, Journal of the American Chemical Society.

[37]  Charles M. Lieber,et al.  Electrical recording from hearts with flexible nanowire device arrays. , 2009, Nano letters.

[38]  Chunhua Han,et al.  Orientated Langmuir-Blodgett assembly of VO(2) nanowires. , 2009, Nano letters.

[39]  J. Bokor,et al.  Diameter-dependent electron mobility of InAs nanowires. , 2008, Nano letters.

[40]  X. Hong,et al.  High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. , 2008, Physical review letters.

[41]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[42]  Isao Shimoyama,et al.  Flexible, organic light-pen input device with integrated display , 2008 .

[43]  Lawrence T. Clark,et al.  Amorphous silicon logic circuits on flexible substrates , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[44]  Xiangfeng Duan,et al.  Nanowire Thin-Film Transistors: A New Avenue to High-Performance Macroelectronics , 2008, IEEE Transactions on Electron Devices.

[45]  Zhiyong Fan,et al.  Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry , 2008, Proceedings of the National Academy of Sciences.

[46]  John A Rogers,et al.  Semiconductor wires and ribbons for high-performance flexible electronics. , 2008, Angewandte Chemie.

[47]  Zhiyong Fan,et al.  Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires , 2008, 0807.0946.

[48]  Bernard Kippelen,et al.  Comparison of Pentacene and Amorphous Silicon AMOLED Display Driver Circuits , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[49]  L Jay Guo,et al.  Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping , 2008 .

[50]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[51]  A. Javey,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2007, Nano letters.

[52]  A. Javey,et al.  Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing , 2007 .

[53]  David R. Allee,et al.  Low‐temperature amorphous‐silicon backplane technology development for flexible displays in a manufacturing pilot‐line environment , 2007 .

[54]  Charles M Lieber,et al.  Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.

[55]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[56]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[57]  Li Zhang,et al.  Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. , 2007, Journal of the American Chemical Society.

[58]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[59]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[60]  Hao Yan,et al.  Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. , 2007, Nano letters.

[61]  Yuval Golan,et al.  Synthesis, assembly, and optical properties of shape- and phase-controlled ZnSe nanostructures. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[62]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[63]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[64]  Donglei Fan,et al.  Efficiency of assembling of nanowires in suspension by ac electric fields , 2006 .

[65]  Zhiyong Fan,et al.  Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays , 2006 .

[66]  Zhiyong Fan,et al.  High-performance ZnO nanowire field effect transistors , 2006 .

[67]  Wing Kam Liu,et al.  Dielectrophoretic assembly of nanowires. , 2006, The journal of physical chemistry. B.

[68]  Zhiyong Fan,et al.  Chemical sensing with ZnO nanowire field-effect transistor , 2006, IEEE Transactions on Nanotechnology.

[69]  Qi Wang,et al.  Amorphous silicon memory arrays , 2006 .

[70]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[71]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[72]  Wei Liu,et al.  A technique for controlling the alignment of silver nanowires with an electric field , 2006 .

[73]  Thomas N. Jackson,et al.  All-organic active matrix flexible display , 2006 .

[74]  Yuval Golan,et al.  A Semiconductor‐Nanowire Assembly of Ultrahigh Junction Density by the Langmuir–Blodgett Technique , 2006 .

[75]  C. Lee,et al.  Organic thin-film-transistor arrays for active-matrix display on flexible substrate , 2006 .

[76]  Zhiyong Fan,et al.  β-Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor , 2005 .

[77]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  H. Dai,et al.  Oxidation resistant germanium nanowires: bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly. , 2005, Journal of the American Chemical Society.

[79]  Michael C. McAlpine,et al.  High-Performance Nanowire Electronics and Photonics and Nanoscale Patterning on Flexible Plastic Substrates , 2005, Proceedings of the IEEE.

[80]  Z. Fan,et al.  Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors , 2005 .

[81]  L. Wernersson,et al.  Vertical high mobility wrap-gated inas nanowire transistor , 2005, 63rd Device Research Conference Digest, 2005. DRC '05..

[82]  Guorong Chen,et al.  Structures and electrical properties of Ag-tetracyanoquinodimethane organometallic nanowires , 2005, IEEE Transactions on Nanotechnology.

[83]  T. Sakurai,et al.  Cut-and-paste customization of organic FET integrated circuit and its application to electronic artificial skin , 2005, IEEE Journal of Solid-State Circuits.

[84]  H. Dai,et al.  High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. , 2004, Nano letters.

[85]  Yu Huang,et al.  Nanowires for integrated multicolor nanophotonics. , 2004, Small.

[86]  Z. Fan,et al.  Electrical Property of ZnO Nanowire Field-Effect Transistor Characterized with a Scanning Probe , 2005 .

[87]  Zhiyong Fan,et al.  Structures and Electrical Properties of Ag – Tetracyanoquinodimethane Organometallic Nanowires , 2005 .

[88]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[89]  Zhiyong Fan,et al.  ZnO nanowires synthesized by vapor trapping CVD method , 2004 .

[90]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[91]  C. Li,et al.  Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination , 2004 .

[92]  Ute Zschieschang,et al.  Organic electronics on paper , 2004 .

[93]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[94]  Wu Wang,et al.  High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates , 2003 .

[95]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[96]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[97]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[98]  Hong Yang,et al.  Patterned langmuir-blodgett films of monodisperse nanoparticles of iron oxide using soft lithography. , 2003, Journal of the American Chemical Society.

[99]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[100]  John A Rogers,et al.  Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Yu Huang,et al.  Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. , 2001 .

[102]  P. Yang,et al.  Langmuir-Blodgett nanorod assembly. , 2001, Journal of the American Chemical Society.

[103]  K. Asai,et al.  Alternate Multilayer Deposition from Ammonium Amphiphiles and Titanium Dioxide Crystalline Nanosheets Using the Langmuir−Blodgett Technique , 2001 .

[104]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[105]  T. Cao,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001 .

[106]  P. A. Smith,et al.  Electric-field assisted assembly and alignment of metallic nanowires , 2000 .