Coincidence-Based Scoring of Mappings in Ontology Alignment

Ontology Matching (OM) which targets finding a set of alignments across two ontologies, is a key enabler for the success of Semantic Web. In this paper, we introduce a new perspective on this problem. By interpreting ontologies as Typed Graphs embedded in a Metric Space, coincidence of the structures of the two ontologies is formulated. Having such a formulation, we define a mechanism to score mappings. This scoring can then be used to extract a good alignment among a number of candidates. To do this, this paper introduces three approaches: The first one, straightforward and capable of finding the optimum alignment, investigates all possible alignments, but its runtime complexity limits its use to small ontologies only. To overcome this shortcoming, we introduce a second solution as well which employs a Genetic Algorithm (GA) and shows a good effectiveness for some certain test collections. Based on approximative approaches, a third solution is also provided which, for the same purpose, measures random walks in each ontology versus the other.

[1]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[2]  Robert D. Tennent,et al.  The denotational semantics of programming languages , 1976, CACM.

[3]  Hassan Abolhassani,et al.  Coincidence based Mapping Extraction with Genetic Algorithms , 2007, WEBIST.

[4]  James A. McHugh,et al.  Algorithmic Graph Theory , 1986 .

[5]  Marc Ehrig,et al.  State of the art on ontology alignment , 2013 .

[6]  Babak Bagheri Hariri,et al.  Coincidence-Based Refinement of Ontology Matching , 2006 .

[7]  Nigel Shadbolt,et al.  Knowledge Engineering and Management , 2000 .

[8]  Pavel Shvaiko,et al.  Community-Driven Ontology Matching , 2006, ESWC.

[9]  R. Stoltenberg On quasi-metric spaces , 1969 .

[10]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[11]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[12]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[13]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[14]  Jérôme Euzenat Towards composing and benchmarking ontology alignments , 2003 .

[15]  Petko Valtchev,et al.  Construction automatique de taxonomies pour l'aide à la représentation de connaissances par objets , 1999 .

[16]  W. Rudin Principles of mathematical analysis , 1964 .

[17]  Pedro M. Domingos,et al.  Ontology Matching: A Machine Learning Approach , 2004, Handbook on Ontologies.

[18]  Babak Bagheri Hariri,et al.  On Ontology Alignment Experiments , 2006, Webology.

[19]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[20]  Steffen Staab,et al.  QOM - Quick Ontology Mapping , 2004, GI Jahrestagung.

[21]  Alexander Maedche,et al.  Clustering Ontology-Based Metadata in the Semantic Web , 2002, PKDD.

[22]  Edwin R. Hancock,et al.  Graph Matching using Spectral Embedding and Semidefinite Programming , 2004, BMVC.

[23]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[24]  Jun Wang,et al.  Mutual online concept learning for multiple agents , 2002, AAMAS '02.

[25]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[26]  D. B. Guralnik,et al.  Webster's New World college dictionary , 1997 .

[27]  Steffen Staab,et al.  Measuring Similarity between Ontologies , 2002, EKAW.

[28]  Rose Dieng,et al.  Comparison of Personal Ontologies Represented through Conceptual Graphs , 1998, ECAI.

[29]  John Li LOM: A Lexicon-based Ontology Mapping Tool , 2004 .

[30]  Gilles Bisson,et al.  Learning in FOL with a Similarity Measure , 1992, AAAI.

[31]  Pedro M. Domingos,et al.  Learning to Match the Schemas of Data Sources: A Multistrategy Approach , 2003, Machine Learning.

[32]  Anuj R. Jaiswal,et al.  OMEN: A Probabilistic Ontology Mapping Tool , 2005, SEMWEB.

[33]  Federico Malucelli,et al.  Efficient Labelling Algorithms for the Maximum Noncrossing Matching Problem , 1993, Discret. Appl. Math..

[34]  York Sure-Vetter,et al.  Ontology Mapping - An Integrated Approach , 2004, ESWS.

[35]  Jérôme Euzenat,et al.  Specification of a Common Framework for Characterizing Alignment , 2004 .

[36]  Jérôme Euzenat,et al.  A Survey of Schema-Based Matching Approaches , 2005, J. Data Semant..

[37]  Jun Wang,et al.  Mutual Online Ontology Alignment , 2002 .

[38]  Steffen Staab,et al.  Bootstrapping ontology alignment methods with APFEL , 2005, WWW '05.

[39]  Zhiyong Lu,et al.  Evaluation of Lexical Methods for Detecting Relationships Between Concepts from Multiple Ontologies , 2006, Pacific Symposium on Biocomputing.