Using covariance intersection for SLAM

One of the greatest obstacles to the use of Simultaneous Localization And Mapping (SLAM) in a real-world environment is the need to maintain the full correlation structure between the vehicle and all of the landmark estimates. This structure is computationally expensive to maintain and is not robust to linearization errors. In this tutorial we describe SLAM algorithms that attempt to circumvent these difficulties through the use of Covariance Intersection (CI). CI is the optimal algorithm for fusing estimates when the correlations among them are unknown. A feature of CI relative to techniques which exploit full correlation information is that it provides provable consistency with much less computational overhead. In practice, however, a tradeoff typically needs to be made between estimation accuracy and computational cost. We describe a number of techniques that span the range of tradeoffs from maximum computational efficiency with straight CI to maximum estimation efficiency with the maintenance of all correlation information. We present a set of examples illustrating benefits of CI-based SLAM.

[1]  Andrew J. Davison,et al.  Mobile Robot Navigation Using Active Vision , 1998 .

[2]  Hugh F. Durrant-Whyte,et al.  An Autonomous Guided Vehicle for Cargo Handling Applications , 1995, ISER.

[3]  Jeffrey K. Uhlmann,et al.  A counter example to the theory of simultaneous localization and map building , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[4]  Christian Schlegel,et al.  Filter design for simultaneous localization and map building (SLAM) , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[5]  Hugh F. Durrant-Whyte,et al.  A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Xun Xu,et al.  Vision-based rov system , 2000 .

[7]  Patric Jensfelt,et al.  Using multiple Gaussian hypotheses to represent probability distributions for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Jeffrey K. Uhlmann,et al.  General Decentralized Data Fusion With Covariance Intersection (CI) , 2001 .

[9]  William H. Press,et al.  Numerical recipes in C , 2002 .

[10]  Michael Bosse,et al.  Simultaneous Localization and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework , 2004, Int. J. Robotics Res..

[11]  Sj Julier,et al.  Comprehensive Process Models for High-Speed Navigation , 1997 .

[12]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[13]  S. Reece,et al.  Robust, low-bandwidth, multi-vehicle mapping , 2005, 2005 7th International Conference on Information Fusion.

[14]  Matthew R. Walter,et al.  Sparse extended information filters: insights into sparsification , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  T. Michael Knasel,et al.  Robotics and autonomous systems , 1988, Robotics Auton. Syst..

[16]  Eric Foxlin,et al.  VIS-Tracker: a wearable vision-inertial self-tracker , 2003, IEEE Virtual Reality, 2003. Proceedings..

[17]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..

[18]  Olivier Faugeras,et al.  3D Dynamic Scene Analysis , 1992 .

[19]  Ian D. Reid,et al.  Towards constant time SLAM using postponement , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[20]  J. A. Castellanos,et al.  Limits to the consistency of EKF-based SLAM , 2004 .

[21]  Paul Newman,et al.  On the Structure and Solution of the Simultaneous Localisation and Map Building Problem , 1999 .

[22]  Stefan B. Williams,et al.  Map Management for Efficient Simultaneous Localization and Mapping (SLAM) , 2002, Auton. Robots.

[23]  Uwe D. Hanebeck,et al.  A tight bound for the joint covariance of two random vectors with unknown but constrained cross-correlation , 2001, Conference Documentation International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI 2001 (Cat. No.01TH8590).

[24]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[25]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[26]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[27]  Randall Smith,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[28]  Raja Chatila,et al.  Stochastic multisensory data fusion for mobile robot location and environment modeling , 1989 .

[29]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[30]  Y. Bar-Shalom Tracking and data association , 1988 .

[31]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[32]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[33]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[34]  Michael Csorba,et al.  Simultaneous Localisation and Map Building , 1997 .

[35]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Günther Schmidt,et al.  Building a global map of the environment of a mobile robot: the importance of correlations , 1997, Proceedings of International Conference on Robotics and Automation.

[37]  Greg Welch,et al.  SCAAT: incremental tracking with incomplete information , 1997, SIGGRAPH.

[38]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[39]  Hugh F. Durrant-Whyte,et al.  Horizontal model fusion paradigm , 1996, Defense, Security, and Sensing.