Ab Initio Modern Valence Bond Theory

We concentrate in the present account on certain recent developments linked to extensions of spin-coupled theory. In particular, we describe the so-called SCVB* strategy, which employs optimised virtual orbitals to reduce still further the number of nonorthogonal configurations required in accurate calculations of ground and excited state potential energy surfaces. We also outline the CASVB approach, which may be used to generate modern valence bond representations of complete active space self-consistent field wavefunctions or, alternatively, to perform the fully-variational optimisation of quite general types of single- and multicon-figuration modern VB wavefunctions for ground and excited states.

[1]  R. Mcweeny,et al.  A spin‐free form of valence bond theory , 1988 .

[2]  William A. Goddard,et al.  IMPROVED QUANTUM THEORY OF MANY-ELECTRON SYSTEMS. II. THE BASIC METHOD. , 1967 .

[3]  J. R. Collins,et al.  Practical Valence-Bond Calculations , 1982 .

[4]  David L. Cooper,et al.  Fully variational optimization of modern VB wave functions using the CASVB strategy , 1997 .

[5]  J. Gerratt,et al.  General Theory of Spin-Coupled Wave Functions for Atoms and Molecules , 1971 .

[6]  U. Kaldor Spin-Optimized Self-Consistent-Field Function. II. Hyperfine Structure of Atomic Nitrogen , 1970 .

[7]  W. Goddard,et al.  Orbital Description and Properties of the BH Molecule , 1972 .

[8]  D. L. Cooper,et al.  Exact transformations of CI spaces, VB representations of CASSCF wavefunctions and the optimization of VB wavefunctions , 1996 .

[9]  F. Manby,et al.  State-selective optimization of multiconfigurational spin-coupled wavefunctions , 1998 .

[10]  M. Sironi,et al.  Interaction anisotropy and quantum dynamics for vibrationally inelastic collisions of LiH(1Σ) with He(1S) , 1998 .

[11]  Ford,et al.  Charge transfer of N4+ with atomic hydrogen. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  Douglas J. Klein,et al.  Valence-bond theory and chemical structure , 1990 .

[13]  D. L. Cooper,et al.  The spin-coupled description of phenylenedimethylidene , 1998 .

[14]  F. Harris,et al.  SPIN-OPTIMIZED SELF-CONSISTENT-FIELD WAVE FUNCTIONS. , 1969 .

[15]  M. Nascimento,et al.  A generalized multistructural wave function , 1993 .

[16]  R. Mcweeny,et al.  Quantum Systems in Chemistry and Physics. Trends in Methods and Applications , 1997 .

[17]  D. L. Cooper,et al.  Hypercoordinate bonding to main group elements: the spin-coupled point of view , 1999 .

[18]  David L. Cooper,et al.  Optimized spin-coupled virtual orbitals , 1996 .

[19]  D. L. Cooper,et al.  Nonorthogonal weights of modern VB wavefunctions. Implementation and applications within CASVB , 1998 .

[20]  D. L. Cooper,et al.  Potential energy curves and ∂/∂R couplings for electron capture in low-energy collisions of silicon ions with helium and atomic hydrogen , 1998 .

[21]  Are there pi bonds in benzene? , 1987, Physical review letters.

[22]  D. Chipman,et al.  The perfect‐pairing valence bond model for the water molecule , 1976 .

[23]  David L. Cooper,et al.  Modern valence bond representations of CASSCF wavefunctions , 1996 .

[24]  D. L. Cooper,et al.  State- and isotope-dependent charge transfer of with atomic hydrogen in astrophysical and fusion plasmas , 1997 .

[25]  C. A. Coulson,et al.  XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule , 1949 .

[26]  David L. Cooper,et al.  Expansion of the spin-coupled wavefunction in Slater determinants , 1993 .

[27]  W. Goddard,et al.  Electronic Structure of LiH According to a Generalization of the Valence-Bond Method , 1969 .

[28]  A. Thakkar,et al.  Vibrational deactivation of N2(v=1) by inelastic collisions with He3 and He4: An experimental and a theoretical study , 1997 .

[29]  Per-Olov Löwdin,et al.  A Note on the Quantum‐Mechanical Perturbation Theory , 1951 .

[30]  D. L. Cooper,et al.  Classical and quantum dynamics on the collinear potential energy surface for the reaction of Li with H2 , 1998 .

[31]  Philippe C. Hiberty,et al.  Compact and accurate valence bond functions with different orbitals for different configurations: application to the two-configuration description of F2 , 1992 .

[32]  D. L. Cooper,et al.  Modern valence bond descriptions of molecular excited states: An application of CASVB , 1998 .

[33]  D. L. Cooper,et al.  Ab initio study of charge transfer in low energy collisions with atomic hydrogen , 1998 .

[34]  D. L. Cooper,et al.  Modern Valence-Bond Description of Chemical Reaction Mechanisms: Diels−Alder Reaction , 1998 .

[35]  David L. Cooper,et al.  Optimization of virtual orbitals in the framework of a multiconfiguration spin-coupled wave function , 1998 .

[36]  D. L. Cooper,et al.  {bold {ital Ab initio}} study of electron capture in low-energy collisions of N{sup 4+} with hydrogen , 1997 .

[37]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[38]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[39]  M. Sironi,et al.  Vibrational Heating Efficiency of LiH Molecules in Collision with He Atoms , 1998 .

[40]  David L. Cooper,et al.  Applications of spin-coupled valence bond theory , 1991 .

[41]  David L. Cooper,et al.  A New Approach to Valence Bond Calculations: CASVB , 1997 .

[42]  W. J. Orville-Thomas,et al.  Pauling's legacy : modern modelling of the chemical bond , 1999 .

[43]  William A. Goddard,et al.  Improved Quantum Theory of Many‐Electron Systems. V. The Spin‐Coupling Optimized GI Method , 1969 .

[44]  J. Reid,et al.  A new He–CO interaction energy surface with vibrational coordinate dependence. II. The vibrational deactivation of CO(v=1) by inelastic collisions with 3He and 4He , 1997 .

[45]  David L. Cooper,et al.  Spin-coupled valence bond theory , 1988 .

[46]  A. Voter,et al.  The generalized resonating valence bond method: Barrier heights in the HF + D and HCl + D exchange reactions , 1981 .

[47]  David L. Cooper,et al.  STUDY OF THE ELECTRONIC STATES OF THE BENZENE MOLECULE USING SPIN-COUPLED VALENCE BOND THEORY , 1994 .

[48]  M. Raimondi,et al.  The spin-coupled valence bond theory of molecular electronic structure. I. Basic theory and application to the 2Σ+ states of BeH , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[49]  D. L. Cooper,et al.  Symmetry adaptation and the utilization of point group symmetry in valence bond calculations, including CASVB , 1997 .

[50]  F. Penotti Generalization of the Optimized‐Basis‐Set Multi‐Configuration Spin‐Coupled method for the ab initio calculation of atomic and molecular electronic wave functions , 1996 .

[51]  D. L. Cooper,et al.  Spin coupled valence bond theory of van der Waals systems: application to LiH … He , 1994 .

[52]  D. L. Cooper,et al.  Interaction forces and energy transfer dynamics of LiH (1gE+) and helium atoms. I. The ab initio evaluation of the lowest potential energy surface , 1997 .

[53]  D. L. Cooper,et al.  The spin-coupled description of aromatic, antiaromatic and nonaromatic systems , 1999 .

[54]  Xiangzhu Li,et al.  Bonded tableau unitary group approach to the many-electron correlation problem , 1989 .

[55]  U. Kaldor Spin-Optimized Self-Consistent-Field Function. III. Ground States of Boron and Carbon Atoms , 1970 .

[56]  M. Nascimento,et al.  A generalized multi-structural wavefunction. The He+2 molecule as an example , 1991 .

[57]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[58]  W. Goddard,et al.  Orbital Description of the Excited States of LiH , 1972 .

[59]  D. Silver Rotationally inelastic collisions of LiH with He. I. Ab initio potential energy surface , 1980 .

[60]  David L. Cooper,et al.  Modern VB representations of CASSCF wave functions and the fully-variational optimization of modern VB wave functions using the CASVB strategy , 1998 .

[61]  David L. Cooper,et al.  Modern Valence Bond Theory , 1997 .