Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator

Piezomicropositioning actuators, which are widely used in micropositioning applications, exhibit strong rate-dependent hysteresis nonlinearities that affect the accuracy of these micropositioning systems when used in open-loop control systems, and may also even lead to system instability of closed-loop control systems. Feedback control techniques could compensate for the rate-dependent hysteresis in piezomicropositioning actuators. However, accurate sensors over a wide range of excitation frequencies and the feedback control techniques inserted in the closed-loop control systems may limit the use of the piezomicropositioning and nanopositioning systems in different micropositioning and nanopositioning applications. We show that open-loop control techniques, also called feedforward techniques, can compensate for rate-dependent hysteresis nonlinearities over different excitation frequencies. An inverse rate-dependent Prandtl-Ishlinskii model is utilized for feedforward compensation of the rate-dependent hysteresis nonlinearities in a piezomicropositioning stage. The exact inversion of the rate-dependent model holds under the condition that the distances between the thresholds do not decrease in time. The inverse of the rate-dependent model is applied as a feedforward compensator to compensate for the rate-dependent hysteresis nonlinearities of a piezomicropositioning actuator at a range of different excitation frequencies between 0.05-100 Hz. The results show that the inverse compensator suppresses the rate-dependent hysteresis nonlinearities, and the maximum positioning error in the output displacement at different excitation frequencies.

[1]  H. Hu,et al.  Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions , 2005, IEEE/ASME Transactions on Mechatronics.

[2]  Gang Tao,et al.  Adaptive control of plants with unknown hystereses , 1995 .

[3]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[4]  M. Brokate,et al.  Phase Transitions and Hysteresis , 1994 .

[5]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[6]  M. A. Janaideh,et al.  An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds☆ , 2011 .

[7]  P. Krejčí Hysteresis and periodic solutions of semilinear and quasilinear wave equations , 1986 .

[8]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[9]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[10]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[11]  M Grossard,et al.  Modeling and Robust Control Strategy for a Control-Optimized Piezoelectric Microgripper , 2011, IEEE/ASME Transactions on Mechatronics.

[12]  Cheng Yap Shee,et al.  Automatic Hysteresis Modeling of Piezoelectric Micromanipulator in Vision-Guided Micromanipulation Systems , 2012, IEEE/ASME Transactions on Mechatronics.

[13]  M. A. Janaideh,et al.  Prandtl–Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities , 2012 .

[14]  M. A. Janaideh,et al.  Inversion of hysteresis and creep operators , 2012 .

[15]  C. Su,et al.  Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .

[16]  Qingsong Xu,et al.  Dahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator With Piezoelectric Actuation , 2010 .

[17]  Mårten Sjöström,et al.  Exact invertible hysteresis models based on play operators , 2004 .

[18]  Philippe Lutz,et al.  Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever , 2009, IEEE Transactions on Control Systems Technology.

[19]  Ralph C. Smith Smart Material Systems , 2005 .

[20]  Kam K. Leang,et al.  Repetitive control with Prandtl-Ishlinskii hysteresis inverse for piezo-based nanopositioning , 2009, 2009 American Control Conference.

[21]  Pavel Krejcí,et al.  Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems —A New Preisach Modeling Approach , 2009, IEEE Transactions on Automatic Control.

[22]  Santosh Devasia,et al.  Inverse-feedforward of charge-controlled piezopositioners , 2008 .

[23]  Seung-Bok Choi,et al.  Vibration control of a rotating cantilevered beam using piezoactuators: experimental work , 2004 .

[24]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[25]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[26]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[27]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[28]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[29]  Tsu-Chin Tsao,et al.  Dynamic variable depth of cut machining using piezoelectric actuators , 1994 .

[30]  Philippe Lutz,et al.  Hysteresis and vibration compensation in a nonlinear unimorph piezocantilever , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Hassan K. Khalil,et al.  Control of systems with hysteresis via servocompensation and its application to nanopositioning , 2010, Proceedings of the 2010 American Control Conference.

[32]  N. Chaillet,et al.  Mechanical and Control-Oriented Design of a Monolithic Piezoelectric Microgripper Using a New Topological Optimization Method , 2009, IEEE/ASME Transactions on Mechatronics.

[33]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[34]  Qingsong Xu,et al.  A Totally Decoupled Piezo-Driven XYZ Flexure Parallel Micropositioning Stage for Micro/Nanomanipulation , 2011, IEEE Transactions on Automation Science and Engineering.

[35]  Qingsong Xu,et al.  A Novel Piezoactuated XY Stage With Parallel, Decoupled, and Stacked Flexure Structure for Micro-/Nanopositioning , 2011, IEEE Transactions on Industrial Electronics.

[36]  Farid Al-Bender,et al.  Design of piezo-based AVC system for machine tool applications , 2013 .