Management of Retinitis Pigmentosa via Platelet Rich Plasma or Combination with Electromagnetic Stimulation: Retrospective Analysis of One-year Results

[1]  A. Franco-Obregón,et al.  Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration , 2020, Stem Cell Research & Therapy.

[2]  E. Rodriguez-Boulan,et al.  Retinal pigment epithelium polarity in health and blinding diseases. , 2020, Current opinion in cell biology.

[3]  U. Arslan,et al.  Management of Deep Retinal Capillary Ischemia by Electromagnetic Stimulation and Platelet-Rich Plasma: Preliminary Clinical Results , 2019, Advances in Therapy.

[4]  S. Tsang,et al.  Comparison of structural progression between ciliopathy and non-ciliopathy associated with autosomal recessive retinitis pigmentosa , 2019, Orphanet Journal of Rare Diseases.

[5]  C. Jayadev,et al.  Quantifying microstructural changes in retinitis pigmentosa using spectral domain – optical coherence tomography , 2019, Eye and Vision.

[6]  V. Brar,et al.  Therapeutic implications of nanomedicine for ocular drug delivery. , 2019, Drug discovery today.

[7]  R. Sze,et al.  Practical considerations for establishing and maintaining a magnetic resonance imaging safety program in a pediatric practice , 2019, Pediatric Radiology.

[8]  S. Tsang,et al.  Fundus autofluorescence and ellipsoid zone (EZ) line width can be an outcome measurement in RHO-associated autosomal dominant retinitis pigmentosa , 2019, Graefe's Archive for Clinical and Experimental Ophthalmology.

[9]  A. Patruno,et al.  Extremely low‐frequency electromagnetic fields accelerates wound healing modulating MMP‐9 and inflammatory cytokines , 2018, Cell proliferation.

[10]  U. Arslan,et al.  Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results , 2018, Graefe's Archive for Clinical and Experimental Ophthalmology.

[11]  S. K. Li,et al.  Transscleral passive and iontophoretic transport: theory and analysis , 2018, Expert opinion on drug delivery.

[12]  M. Mastrogiacomo,et al.  Allogeneic platelet‐rich plasma affects monocyte differentiation to dendritic cells causing an anti‐inflammatory microenvironment, putatively fostering wound healing , 2018, Journal of tissue engineering and regenerative medicine.

[13]  Felipe A Medeiros,et al.  Recent developments in visual field testing for glaucoma , 2017, Current opinion in ophthalmology.

[14]  Muhammad Umar Ali,et al.  Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario , 2017, 3 Biotech.

[15]  Z. Pei,et al.  High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats , 2017, International journal of molecular sciences.

[16]  K. Bollinger,et al.  Role of BDNF/TrkB pathway in the visual system: therapeutic implications for glaucoma , 2017, Expert review of ophthalmology.

[17]  S. Z. Scalinci,et al.  Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study , 2016, Oncotarget.

[18]  Qingjiong Zhang,et al.  Retinitis Pigmentosa: Progress and Perspective , 2016, Asia-Pacific journal of ophthalmology.

[19]  T. Ochiya,et al.  How electromagnetic fields can influence adult stem cells: positive and negative impacts , 2016, Stem Cell Research & Therapy.

[20]  H. Kaplan,et al.  Two-Step Reactivation of Dormant Cones in Retinitis Pigmentosa. , 2016, Cell reports.

[21]  Anna V. Taubenberger,et al.  A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy , 2016, eLife.

[22]  V. Perez,et al.  Autologous serum and plasma rich in growth factors in ophthalmology: preclinical and clinical studies , 2015, Acta ophthalmologica.

[23]  D. Hood,et al.  A comparison of progressive loss of the ellipsoid zone (EZ) band in autosomal dominant and x-linked retinitis pigmentosa. , 2014, Investigative ophthalmology & visual science.

[24]  E. Levine,et al.  Retinal pigment epithelium development, plasticity, and tissue homeostasis. , 2014, Experimental eye research.

[25]  G. Orive,et al.  Plasma rich in growth factors (PRGF-Endoret) stimulates corneal wound healing and reduces haze formation after PRK surgery. , 2013, Experimental eye research.

[26]  R. Spaide,et al.  OUTER RETINA ANALYSIS BY OPTICAL COHERENCE TOMOGRAPHY IN CONE-ROD DYSTROPHY PATIENTS , 2013, Retina.

[27]  R. Borojevic,et al.  Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors , 2013, Stem Cell Research & Therapy.

[28]  S. Haverkamp,et al.  Characterization of neurite outgrowth and ectopic synaptogenesis in response to photoreceptor dysfunction , 2013, Cellular and Molecular Life Sciences.

[29]  S. Bhoi,et al.  High frequency repetitive transcranial magnetic stimulation (rTMS) is effective in migraine prophylaxis: an open labeled study , 2012, Neurological research.

[30]  R. Koenekoop Why Some Photoreceptors Die, While Others Remain Dormant: Lessons From RPE65 and LRAT Associated Retinal Dystrophies , 2011, Ophthalmic genetics.

[31]  P. Campochiaro,et al.  Trans-scleral delivery of antiangiogenic proteins. , 2008, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[32]  B. Rosner,et al.  Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. , 2007, Investigative ophthalmology & visual science.

[33]  Dyonne T Hartong,et al.  Retinitis pigmentosa , 2009 .

[34]  Olaf Strauss,et al.  The retinal pigment epithelium in visual function. , 2005, Physiological reviews.

[35]  Chi Li,et al.  Growth Factor Regulation of Autophagy and Cell Survival in the Absence of Apoptosis , 2005, Cell.

[36]  G. Reed,et al.  Molecular mechanisms of platelet exocytosis: insights into the "secrete" life of thrombocytes. , 2000, Blood.

[37]  G. Fish,et al.  Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy. , 1999, Ophthalmology.

[38]  M. Nieto,et al.  Growth factors as survival factors: Regulation of apoptosis , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[39]  T. Friberg,et al.  Natural course of retinitis pigmentosa over a three-year interval. , 1985, American journal of ophthalmology.

[40]  Ruchira Singh,et al.  Pluripotent Stem Cells to Model Degenerative Retinal Diseases: The RPE Perspective. , 2019, Advances in experimental medicine and biology.

[41]  M. Mehta,et al.  Retinitis Pigmentosa: Review of Current Treatment. , 2019, International ophthalmology clinics.

[42]  K. Bharti Pluripotent Stem Cells in Eye Disease Therapy , 2019, Advances in Experimental Medicine and Biology.

[43]  E. Levine,et al.  Retinal pigment epithelium development, plasticity, and tissue homeostasis (Invited review for Experimental Eye Research ) , 2014 .

[44]  Y. Murakami,et al.  Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. , 2013, Ophthalmology.