Quantum information inequalities via tracial positive linear maps

Abstract We present some generalizations of quantum information inequalities involving tracial positive linear maps between C ⁎ -algebras. Among several results, we establish a noncommutative Heisenberg uncertainty relation. More precisely, we show that if Φ : A → B is a tracial positive linear map between C ⁎ -algebras, ρ ∈ A is a Φ-density element and A , B are self-adjoint operators of A such that sp ( -i ρ 1 2 [ A , B ] ρ 1 2 ) ⊆ [ m , M ] for some scalers 0 m M , then under some conditions (0.1) V ρ , Φ ( A ) ♯ V ρ , Φ ( B ) ≥ 1 2 K m , M ( ρ [ A , B ] ) | Φ ( ρ [ A , B ] ) | , where K m , M ( ρ [ A , B ] ) is the Kantorovich constant of the operator -i ρ 1 2 [ A , B ] ρ 1 2 and V ρ , Φ ( X ) is the generalized variance of X. In addition, we use some arguments differing from the scalar theory to present some inequalities related to the generalized correlation and the generalized Wigner–Yanase–Dyson skew information.

[1]  Qiang Zhang,et al.  On skew information , 2004, IEEE Transactions on Information Theory.

[2]  J. Pečarić,et al.  Mond-pečarić method in operator inequalities : inequalities for bounded selfadjoint operators on Hilbert space , 2005 .

[3]  A Grüss inequality for n-positive linear maps , 2010, 1006.1021.

[4]  S. Luo Heisenberg uncertainty relation for mixed states , 2005 .

[5]  Chul Ki Ko,et al.  Uncertainty relation associated with a monotone pair skew information , 2011 .

[6]  Kenjiro Yanagi,et al.  A generalized skew information and uncertainty relation , 2005, IEEE Trans. Inf. Theory.

[7]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[8]  Denes Petz,et al.  Extremal properties of the variance and the quantum Fisher information , 2011, 1109.2831.

[9]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[10]  How to distinguish quantum covariances using uncertainty relations , 2011 .

[11]  Tracial positive linear maps of *-algebras , 1983 .

[12]  Gruss inequality for some types of positive linear maps , 2014, 1411.0134.

[13]  J. M. Aldaz,et al.  Advances in operator cauchy-schwarz inequalities and their reverses , 2015 .

[14]  J. Pečarić,et al.  Mond-Pecaric Method in Operator Inequalities , 2005 .

[15]  E. Størmer Positive linear maps of operator algebras , 2012 .

[16]  E. Schrodinger,et al.  About Heisenberg Uncertainty Relation , 1930 .

[17]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[18]  E. Lance Hilbert C*-Modules , 1995 .

[19]  D. Ilišević,et al.  On the Cauchy-Schwarz inequality and its reverse in semi-inner product C*-modules , 2007 .

[20]  S. Friedland,et al.  Universal uncertainty relations. , 2013, Physical review letters.