Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface.

We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding 2 orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO(2) substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.

[1]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[2]  Martin Dressel,et al.  Electrodynamics of correlated electron materials , 2011, 1106.2309.

[3]  F. J. Garcia-Vidal,et al.  Fields radiated by a nanoemitter in a graphene sheet , 2011, 1104.3558.

[4]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[5]  M. Stockman Nanoplasmonics: The physics behind the applications , 2011 .

[6]  F. Keilmann,et al.  Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy , 2011 .

[7]  J. A. Schaefer,et al.  Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem , 2010, 1008.1130.

[8]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[9]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[10]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[11]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[12]  Younan Xia,et al.  Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. , 2009, Nano letters.

[13]  T. Heinz,et al.  Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. , 2009, Nano letters.

[14]  A. Neto,et al.  Conductivity of suspended and non-suspended graphene at finite gate voltage , 2008, 0809.2578.

[15]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[16]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[17]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[18]  J. Aizpurua,et al.  Substrate-enhanced infrared near-field spectroscopy. , 2008, Optics express.

[19]  R. Hillenbrand,et al.  Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. , 2007, Optics express.

[20]  Harry A Atwater,et al.  The promise of plasmonics , 2007, SIGD.

[21]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[22]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[23]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[24]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006, cond-mat/0610630.

[25]  Rainer Hillenbrand,et al.  Pseudoheterodyne detection for background-free near-field spectroscopy , 2006 .

[26]  B. Hecht,et al.  Principles of Nano-Optics: Probe–sample distance control , 2006 .

[27]  Abraham Katzir,et al.  Silver halide single-mode fibers for the middle infrared , 2005 .

[28]  F. Keilmann,et al.  Nanomechanical resonance tuning and phase effects in optical near-field interaction , 2004 .

[29]  J. Aizpurua,et al.  Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe , 2003 .

[30]  Grenoble,et al.  Resonance shift effects in apertureless scanning near-field optical microscopy , 2002, cond-mat/0208481.

[31]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[32]  F. Keilmann,et al.  Complex optical constants on a subwavelength scale. , 2000, Physical review letters.

[33]  Shung Dielectric function and plasmon structure of stage-1 intercalated graphite. , 1986, Physical review. B, Condensed matter.