Conditional stability up to the final time for backward-parabolic equations with Log-Lipschitz coefficients

Abstract. We prove logarithmic conditional stability up to the final time for backward-parabolic operators whose coefficients are Log-Lipschitz continuous in t and Lipschitz continuous in x. The result complements previous achievements of Del Santo and Prizzi (2009) and Del Santo, Jäh and Prizzi (2015), concerning conditional stability (of a type intermediate between Hölder and logarithmic), arbitrarily closed, but not up to the final time.

[1]  Keith Miller,et al.  Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients , 1973 .

[2]  William Rundell,et al.  Inverse Problems in Partial Differential Equations , 1990 .

[3]  Fritz John,et al.  Continuous dependence on data for solutions of partial differential equations with a prescribed bound , 1960 .

[4]  S. Agmon,et al.  Properties of Solutions of Ordinary Differential Equations in Banach Space , 2013 .

[5]  Masahiro Yamamoto,et al.  Conditional stability in a backward parabolic system , 2014 .

[6]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[7]  F. Colombini,et al.  The Cauchy problem for wave equations with non Lipschitz coefficients; application to continuation of solutions of some nonlinear wave equations , 2008 .

[8]  M. Prizzi,et al.  On backward uniqueness for parabolic equations when Osgood continuity of the coefficients fails at one point , 2020, Annali di Matematica Pura ed Applicata (1923 -).

[9]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[10]  N. Mandache On a Counterexample Concerning Unique Continuation for Elliptic Equations in Divergence Form , 1998 .

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[13]  Masahiro Yamamoto,et al.  Carleman estimates for parabolic equations and applications , 2009 .

[14]  M. Prizzi,et al.  A new result on backward uniqueness for parabolic operators , 2011, 1112.2472.

[15]  M. Prizzi,et al.  Continuous dependence for backward parabolic operators with Log-Lipschitz coefficients , 2008, 0801.3990.

[16]  Guy Metivier,et al.  Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems , 2008 .

[17]  Christian Jäh,et al.  Conditional stability for backward parabolic equations with LogLipt×Lipx-coefficients , 2015 .

[18]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[19]  D. Casagrande,et al.  Conditional stability for backward parabolic operators with Osgood continuous coefficients , 2019, Annali di Matematica Pura ed Applicata (1923 -).

[20]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[21]  M. Prizzi,et al.  Backward uniqueness for parabolic operators whose coefficients are non-Lipschitz continuous in time , 2005 .