Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications

Quantum dot superlattices offer prospects for new generations of semiconductor devices. One possible recently suggested application is in tandem solar cells based entirely on silicon, using confinement in the quantum dot to control the cell band gap. In this paper, we use the effective mass approach to calculate the conduction band structure of a three-dimensional silicon quantum dot superlattice with the dots embedded in a matrix of silicon dioxide, silicon nitride, or silicon carbide. The quantum dot superlattice is modeled as a regularly spaced array of equally sized cubic dots in the respective matrix. Incorporating the effect of silicon anisotropic effective mass is shown to reduce both the degeneracies of the isotropic solutions and the energy separation between states. Electron densities of state and mobilities are derived from the band structure data. Theoretical results for the effect of dot size, interdot distance, and matrix material have been obtained. These results clarify the required design...

[1]  Bo Monemar,et al.  Electron effective masses in 4H SiC , 1995 .

[2]  Naoki Yokoyama,et al.  MICROSTRUCTURE AND OPTICAL ABSORPTION PROPERTIES OF SI NANOCRYSTALS FABRICATED WITH LOW-PRESSURE CHEMICAL-VAPOR DEPOSITION , 1996 .

[3]  G. Bastard,et al.  Superlattice band structure in the envelope-function approximation , 1981 .

[4]  Philippe M. Fauchet,et al.  Ordering and self-organization in nanocrystalline silicon , 2000, Nature.

[5]  A. Freeman,et al.  Generalized magnetic susceptibilities in metals: Application of the analytic tetrahedron linear energy method to Sc , 1975 .

[6]  Chenming Hu,et al.  Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric , 2000, IEEE Electron Device Letters.

[7]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[8]  B. Brar,et al.  Direct extraction of the electron tunneling effective mass in ultrathin SiO2 , 1996 .

[9]  Gavin Conibeer,et al.  Resonant tunneling through defects in an insulator: Modeling and solar cell applications , 2004 .

[10]  J. Heitmann,et al.  Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach , 2002 .

[11]  Kang L. Wang,et al.  INTERSUBBAND ABSORPTION IN BORON-DOPED MULTIPLE GE QUANTUM DOTS , 1999 .

[12]  J. Maserjian,et al.  Tunneling in thin MOS structures , 1974 .

[13]  G. Bastard,et al.  Theoretical investigations of superlattice band structure in the envelope-function approximation , 1982 .

[14]  Philippe M. Fauchet,et al.  Nanocrystalline-silicon superlattice produced by controlled recrystallization , 1998 .

[15]  E. Janzén,et al.  ELECTRON EFFECTIVE MASSES AND MOBILITIES IN HIGH-PURITY 6H-SIC CHEMICAL VAPOR DEPOSITION LAYERS , 1994 .

[16]  M G Burt,et al.  The justification for applying the effective-mass approximation to microstructures , 1992 .

[17]  Alexander A. Balandin,et al.  Miniband formation in a quantum dot crystal , 2001 .

[18]  M. Anantram,et al.  Role of scattering in nanotransistors , 2002, cond-mat/0211069.

[19]  D. Dimaria,et al.  Contact currents in silicon nitride , 1976 .

[20]  M. Green,et al.  Accurate determination of minority carrier‐ and lattice scattering‐mobility in silicon from photoconductance decay , 1992 .

[21]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[22]  T. H. DiStefano,et al.  Electron tunneling at Al‐SiO2 interfaces , 1981 .

[23]  Alexander A. Balandin,et al.  Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice , 2002 .

[24]  G. Lehmann,et al.  On the Numerical Calculation of the Density of States and Related Properties , 1972 .

[25]  M. Burt On the validity and range of applicability of the particle in a box model , 1994 .

[26]  J. Maserjian,et al.  Oscillations in MOS tunneling , 1975 .

[27]  Chen,et al.  Determination of the electron effective-mass tensor in 4H SiC. , 1996, Physical review. B, Condensed matter.

[28]  Walter A. Harrison,et al.  Electronic structure and the properties of solids : the physics of the chemical bond , 1980 .

[29]  Martin A. Green Third Generation Photovoltaics: Advanced Solar Energy Conversion , 2004 .

[30]  W. Mizubayashi,et al.  Analysis of Tunnel Current through Ultrathin Gate Oxides , 1998 .

[31]  Martin A. Green,et al.  Third generation photovoltaics: Ultra‐high conversion efficiency at low cost , 2001 .

[32]  M. Green Intrinsic concentration, effective densities of states, and effective mass in silicon , 1990 .

[33]  H. Iwata Determination of the in-plane anisotropy of the electron effective mass tensor in 6H-SiC , 2003 .

[34]  Walter Kohn,et al.  Shallow Impurity States in Silicon and Germanium , 1957 .

[35]  Z. Weinberg,et al.  On tunneling in metal‐oxide‐silicon structures , 1982 .

[36]  F. Trani,et al.  Conduction-band anisotropy effects in spherical semiconductor nanocrystals: a theoretical study , 2003 .

[37]  A. Chomette,et al.  Phonon-limited near equilibrium transport in a semiconductor superlattice , 1982 .