Controllable preparation of CeF3:Tb3+ nanostructures with different morphologies from an ionic liquid-based extraction system

[1]  Yang Zhang,et al.  Interface mechanism of a rapid and mild aqueous-organic method to prepare CePO4 nanostructures , 2014 .

[2]  C. Mirkin,et al.  Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. , 2013, Journal of the American Chemical Society.

[3]  M. Loi,et al.  Low Driving Voltage and High Mobility Ambipolar Field‐Effect Transistors with PbS Colloidal Nanocrystals , 2013, Advanced materials.

[4]  A. El Kadib,et al.  Low temperature synthesis of ordered mesoporous stable anatase nanocrystals: the phosphorus dendrimer approach. , 2013, Nanoscale.

[5]  C. Murphy,et al.  The Quest for Shape Control: A History of Gold Nanorod Synthesis , 2013 .

[6]  M. Jaroniec,et al.  Ionic-liquid-assisted synthesis of uniform fluorinated B/C-codoped TiO2 nanocrystals and their enhanced visible-light photocatalytic activity. , 2013, Chemistry.

[7]  Peter J. Miedziak,et al.  Gold-palladium core-shell nanocrystals with size and shape control optimized for catalytic performance. , 2013, Angewandte Chemie.

[8]  N. Zheng,et al.  Small Adsorbate‐Assisted Shape Control of Pd and Pt Nanocrystals , 2012, Advanced materials.

[9]  Hongmin Cui,et al.  Recovery of rare earth elements from simulated fluorescent powder using bifunctional ionic liquid extractants (Bif‐ILEs) , 2012 .

[10]  T. Srinivasan,et al.  Extraction and third phase formation behavior of Eu(III) IN CMPO–TBP extractants present in room temperature ionic liquid , 2011 .

[11]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[12]  Deqian Li,et al.  The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction. , 2010, Talanta.

[13]  Deqian Li,et al.  Reversed micelle formation in a model liquid-liquid extraction system. , 2008, Journal of colloid and interface science.

[14]  Jun Lin,et al.  LaF3, CeF3, CeF3:Tb3+, and CeF3:Tb3+@LaF3 (Core−Shell) Nanoplates: Hydrothermal Synthesis and Luminescence Properties. , 2008 .

[15]  K. R. Seddon,et al.  Applications of ionic liquids in the chemical industry. , 2008, Chemical Society reviews.

[16]  U. Schubert,et al.  Magnetorheological Fluids Based on Ionic Liquids , 2007 .

[17]  Russell E Morris,et al.  Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. , 2007, Accounts of chemical research.

[18]  Robin D. Rogers,et al.  Materials science: Reflections on ionic liquids , 2007, Nature.

[19]  Johnathan E. Holladay,et al.  Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural , 2007, Science.

[20]  Koen Binnemans,et al.  Lanthanides and actinides in ionic liquids. , 2007, Chemical reviews.

[21]  Xiangfeng Chu,et al.  Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method , 2007 .

[22]  H. Guo Photoluminescent properties of CeF3:Tb3+ nanodiskettes prepared by hydrothermal microemulsion , 2006 .

[23]  C. O'connor,et al.  A Facile Synthesis and Photoluminescent Properties of Redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (Core/Shell) Nanoparticles , 2006 .

[24]  M. Antonietti,et al.  Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. , 2004, Angewandte Chemie.

[25]  Z. Kolarik,et al.  Extraction of zirconium nitrate by TBP in n-octane: influence of cation type on third phase formation according to the "sticky spheres" model. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[26]  F. Testard,et al.  Supramolecular organisation of tri-n-butyl phosphate in organic diluent on approaching third phase transition , 2004 .

[27]  M. Antonietti,et al.  Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. , 2003, Journal of the American Chemical Society.

[28]  M. Haase,et al.  Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. , 2003, Angewandte Chemie.

[29]  Jinwoo Cheon,et al.  Anisotropic Shape Control of Colloidal Inorganic Nanocrystals , 2003 .

[30]  J. Ferraro,et al.  Third Phase Formation Revisited: The U(VI), HNO3–TBP, n‐Dodecane System , 2003 .

[31]  T. Hyeon,et al.  Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. , 2002, Journal of the American Chemical Society.

[32]  Fu Xun,et al.  Extraction behavior of TOPO (or TRPO)–kerosene/Ti(IV)–H2SO4 systems and the preparation of TiO2 by predispersed-hydrolytic method , 2001 .

[33]  Y. Qian,et al.  In-Situ Source–Template–Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres , 2000 .

[34]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[35]  Fu Xun,et al.  Three phase extraction study II TBP-kerosene/H2SO4–TiOSO4 system and the preparation of ultrafine powder of TiO2 , 1999 .

[36]  Hu Zheng-shui,et al.  Three phase extraction study. I. Tri-butyl phosphate-kerosene/H2SO4–H2O extraction system , 1999 .

[37]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[38]  Chuanfang Yang,et al.  Production of ultrafine ZrO2 and Y-doped ZrO2 powders by solvent extraction from solutions of perchloric and nitric acid with tri-n-butyl phosphate in kerosene , 1996 .

[39]  Z. Kolarik,et al.  A REVIEW OF THIRD PHASE FORMATION IN EXTRACTION OF ACTINIDES BY NEUTRAL ORGANOPHOSPHORUS EXTRACTANTS , 1996 .

[40]  K. Osseo-asare,et al.  Aggregation, reversed micelles, and microemulsions in liquid-liquid extraction: the tri-n-butyl phosphatediluent-water-electrolyte system , 1991 .

[41]  K. Osseo-asare,et al.  Volume changes and distribution of HCl and H2O in the tri-n-butyl phosphate-H2O-HCl liquid-liquid system: A reversed micellar phenomenological model , 1990 .