Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma.

BACKGROUND The anti-VEGF antibody, bevacizumab, is standard treatment for patients with recurrent glioblastoma. In this setting, traditional anatomic MRI methods such as post-contrast T1-weighted and T2-weighted imaging are proving unreliable for monitoring response. Here we evaluate the prognostic significance of pre- and posttreatment relative cerebral blood volume (rCBV) derived from dynamic susceptibility contrast MRI to predict response to bevacizumab. METHODS Thirty-six participants with recurrent high-grade gliomas who underwent rCBV imaging 60 days before and 20-60 days after starting bevacizumab treatment were enrolled. Tumor regions of interest (ROIs) were determined from deltaT1 maps computed from the difference between standardized post and precontrast T1-weighted images. Both pre- and posttreatment rCBV maps were corrected for leakage and standardized (stdRCBV) to a consistent intensity scale. The Kaplan-Meier method was used to determine if either the pre- or post-bevacizumab stdRCBV within the tumor ROI was predictive of overall survival (OS) or progression free survival (PFS). RESULTS The OS was significantly longer if either the pre- (380d vs 175d; P=.0024) or posttreatment stdRCBV (340d vs 186d; P = .0065) was <4400. The posttreatment stdRCBV was also predictive of PFS (167d vs 78d; P = .0006). When the stdRCBV values were both above versus both below threshold, the OS was significantly worse (100.5d vs 395d; P < .0001). With a 32.5% decrease in stdRCBV, the risk of death was reduced by about 68% but increased by 140% with a 29% increase in stdRCBV. CONCLUSIONS Standardized rCBV is predictive of OS and PFS in patients with recurrent high-grade brain tumor treated with bevacizumab.

[1]  H. Dvorak,et al.  Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets , 2012, Clinical & Experimental Metastasis.

[2]  D. Kong,et al.  Diagnostic Dilemma of Pseudoprogression in the Treatment of Newly Diagnosed Glioblastomas: The Role of Assessing Relative Cerebral Blood Flow Volume and Oxygen-6-Methylguanine-DNA Methyltransferase Promoter Methylation Status , 2011, American Journal of Neuroradiology.

[3]  P. LaViolette,et al.  Volumetric analysis of functional diffusion maps is a predictive imaging biomarker for cytotoxic and anti-angiogenic treatments in malignant gliomas , 2011, Journal of Neuro-Oncology.

[4]  K. Schmainda,et al.  Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter‐ and intrapatient comparisons , 2010, Magnetic resonance in medicine.

[5]  Susan M. Chang,et al.  Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  P. LaViolette,et al.  Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity , 2010, Journal of magnetic resonance imaging : JMRI.

[7]  G. Fuller,et al.  Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice , 2010, Neuro-oncology.

[8]  Marit D. Moen Bevacizumab: in previously treated glioblastoma. , 2010, Drugs.

[9]  M. Malkin,et al.  Delta T1 Method: An Automatic Post-contrast ROI Selection Technique for Brain Tumors , 2010 .

[10]  Kathleen M. Schmainda,et al.  Utility of functional diffusion maps to monitor a patient diagnosed with gliomatosis cerebri , 2010, Journal of Neuro-Oncology.

[11]  T. Mikkelsen,et al.  Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  Sonja Loges,et al.  Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. , 2009, Cancer cell.

[13]  J E Heiserman,et al.  Relative Cerebral Blood Volume Values to Differentiate High-Grade Glioma Recurrence from Posttreatment Radiation Effect: Direct Correlation between Image-Guided Tissue Histopathology and Localized Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging Measurements , 2009, American Journal of Neuroradiology.

[14]  John A Butman,et al.  Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  P. Kelly,et al.  Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. , 2009, Journal of neurosurgery.

[16]  S. Kurpad,et al.  DSC-MRI Measures of rCBV Predict Response to Bevacizumab Treatment More Reliably than Standard MRI in Patients with Recurrent High-Grade Gliomas , 2009 .

[17]  T. Mikkelsen,et al.  Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan , 2009, Journal of Neuro-Oncology.

[18]  J. Henson,et al.  Brain Tumor Imaging in Clinical Trials , 2008, American Journal of Neuroradiology.

[19]  Tracy T Batchelor,et al.  AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. , 2007, Cancer cell.

[20]  R M Weisskoff,et al.  Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. , 2006, AJNR. American journal of neuroradiology.

[21]  Glyn Johnson,et al.  Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. , 2006, Radiology.

[22]  B. D. Ward,et al.  Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. , 2004, AJNR. American journal of neuroradiology.

[23]  M. Dickler,et al.  Maximizing the potential of bevacizumab in cancer treatment. , 2004, The oncologist.

[24]  M. Gruber,et al.  Temozolomide in Combination With Irinotecan for Treatment of Recurrent Malignant Glioma , 2004, American journal of clinical oncology.

[25]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[26]  M. Takahashi,et al.  Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. , 2001, AJNR. American journal of neuroradiology.

[27]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[28]  A P Pathak,et al.  Utility of simultaneously acquired gradient‐echo and spin‐echo cerebral blood volume and morphology maps in brain tumor patients , 2000, Magnetic resonance in medicine.

[29]  B. Rosen,et al.  High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[30]  M Takahashi,et al.  Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. , 2000, AJNR. American journal of neuroradiology.

[31]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[32]  B R Rosen,et al.  Echo-planar MR determination of relative cerebral blood volume in human brain tumors: T1 versus T2 weighting. , 1996, AJNR. American journal of neuroradiology.

[33]  E F Halpern,et al.  Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. , 1994, Radiology.

[34]  T Kubota,et al.  Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. , 1993, Radiology.

[35]  T. Cascino,et al.  Response criteria for phase II studies of supratentorial malignant glioma. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.