PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants

[1]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[2]  M. Kumar,et al.  Fungal association and utilization of phosphate by plants: success, limitations, and future prospects , 2015, Front. Microbiol..

[3]  M. Kumar,et al.  Isolation of genes conferring salt tolerance from Piriformospora indica by random overexpression in Escherichia coli , 2015, World journal of microbiology & biotechnology.

[4]  N. Tuteja,et al.  Structure of RNA-interacting Cyclophilin A-like protein from Piriformospora indica that provides salinity-stress tolerance in plants , 2013, Scientific Reports.

[5]  Manoj Kumar,et al.  Piriformospora indica rescues growth diminution of rice seedlings during high salt stress , 2013, Plant signaling & behavior.

[6]  S. Ying,et al.  P-type calcium ATPase functions as a core regulator of Beauveria bassiana growth, conidiation and responses to multiple stressful stimuli through cross-talk with signalling networks. , 2013, Environmental microbiology.

[7]  M. Schmidt-Heydt,et al.  HOG MAP kinase regulation of alternariol biosynthesis in Alternaria alternata is important for substrate colonization. , 2012, International journal of food microbiology.

[8]  P. Tudzynski,et al.  The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. , 2012, Molecular plant-microbe interactions : MPMI.

[9]  K. Jung,et al.  Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. , 2012, Fungal genetics and biology : FG & B.

[10]  S. Sokolov,et al.  Inactivation of Pmc1 vacuolar Ca2+ ATPase causes G2 cell cycle delay in Hansenula polymorpha , 2012, Cell cycle.

[11]  F. Asiegbu,et al.  Role of the HaHOG1 MAP Kinase in Response of the Conifer Root and But Rot Pathogen (Heterobasidion annosum) to Osmotic and Oxidative Stress , 2012, PloS one.

[12]  S. Riaz,et al.  Gene Expression Profiling of Plants under Salt Stress , 2011 .

[13]  J. Aguirre,et al.  Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions , 2011, Molecular microbiology.

[14]  S. Kale,et al.  Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. , 2010, Biochemical and biophysical research communications.

[15]  S. Dong,et al.  PsSAK1, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean. , 2010, Molecular plant-microbe interactions : MPMI.

[16]  M. Cox,et al.  Disruption of Signaling in a Fungal-Grass Symbiosis Leads to Pathogenesis1[W][OA] , 2010, Plant Physiology.

[17]  M. Kumar,et al.  A Phosphate Transporter from the Root Endophytic Fungus Piriformospora indica Plays a Role in Phosphate Transport to the Host Plant* , 2010, The Journal of Biological Chemistry.

[18]  S. Gomes,et al.  Transcriptional Response to Hypoxia in the Aquatic Fungus Blastocladiella emersonii , 2010, Eukaryotic Cell.

[19]  A. Varma,et al.  Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications , 2009, Symbiosis.

[20]  António Martins,et al.  A permease encoded by STL1 is required for active glycerol uptake by Candida albicans. , 2009, Microbiology.

[21]  J. Pérez-Martín,et al.  Growth at High pH and Sodium and Potassium Tolerance in Media above the Cytoplasmic pH Depend on ENA ATPases in Ustilago maydis , 2009, Eukaryotic Cell.

[22]  Y. Pei,et al.  Mitogen-Activated Protein Kinase hog1 in the Entomopathogenic Fungus Beauveria bassiana Regulates Environmental Stress Responses and Virulence to Insects , 2009, Applied and Environmental Microbiology.

[23]  Manoj Kumar,et al.  Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. , 2009, Microbiology.

[24]  Sneh L. Singla-Pareek,et al.  Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. , 2009, Functional & Integrative Genomics.

[25]  J. Heitman,et al.  Identification of ENA1 as a Virulence Gene of the Human Pathogenic Fungus Cryptococcus neoformans through Signature-Tagged Insertional Mutagenesis , 2009, Eukaryotic Cell.

[26]  F. Waller,et al.  Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. , 2008, Plant & cell physiology.

[27]  Alga Zuccaro,et al.  Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. , 2008, The New phytologist.

[28]  G. Kohut,et al.  Fphog1, a HOG‐type MAP kinase gene, is involved in multistress response in Fusarium proliferatum , 2008, Journal of basic microbiology.

[29]  B. Horwitz,et al.  Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. , 2008, Molecular plant-microbe interactions : MPMI.

[30]  A. Tyagi,et al.  A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response , 2008, Functional & Integrative Genomics.

[31]  S. Foster,et al.  Functional analysis of a fungal endophyte stress-activated MAP kinase , 2008, Current Genetics.

[32]  B. Tudzynski,et al.  BcSAK1, a Stress-Activated Mitogen-Activated Protein Kinase, Is Involved in Vegetative Differentiation and Pathogenicity in Botrytis cinerea , 2006, Eukaryotic Cell.

[33]  F. J. Quintero,et al.  Conservation of the Salt Overly Sensitive Pathway in Rice1[C][W][OA] , 2006, Plant Physiology.

[34]  G. Kema,et al.  MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. , 2006, Molecular plant-microbe interactions : MPMI.

[35]  S. Arase,et al.  Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae. , 2006, FEMS microbiology letters.

[36]  E. Nevo,et al.  A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing-thawing: Prospects for saline agriculture. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Becker,et al.  The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  B. Wong,et al.  The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. , 2005, Microbiology.

[39]  F. Feltus,et al.  Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22) , 2005 .

[40]  J. Heitman,et al.  Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. , 2005, Molecular biology of the cell.

[41]  António Martins,et al.  A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. , 2005, Molecular biology of the cell.

[42]  A. Varma,et al.  Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane , 2004 .

[43]  T. Sakurai,et al.  Monitoring the expression profiles of genes induced by hyperosmotic, high salinity, and oxidative stress and abscisic acid treatment in Arabidopsis cell culture using a full-length cDNA microarray , 2004, Plant Molecular Biology.

[44]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[45]  C. Nombela,et al.  The Hog1 Mitogen-Activated Protein Kinase Is Essential in the Oxidative Stress Response and Chlamydospore Formation in Candidaalbicans , 2003, Eukaryotic Cell.

[46]  T. Conway,et al.  Gene Expression Profiling of the pH Response in Escherichia coli , 2002, Journal of bacteriology.

[47]  Ira Herskowitz,et al.  Yeast go the whole HOG for the hyperosmotic response. , 2002, Trends in genetics : TIG.

[48]  S. Lam,et al.  Osmoregulation and Fungicide Resistance: the Neurospora crassa os-2 Gene Encodes a HOG1 Mitogen-Activated Protein Kinase Homologue , 2002, Applied and Environmental Microbiology.

[49]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[50]  R. Lew,et al.  Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa. , 2001, European journal of cell biology.

[51]  A. Di Pietro,et al.  A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis , 2001, Molecular microbiology.

[52]  J. Heyman,et al.  The Transcriptional Response of Yeast to Saline Stress* , 2000, The Journal of Biological Chemistry.

[53]  J. Thevelein,et al.  The Transcriptional Response of Saccharomyces cerevisiae to Osmotic Shock , 2000, The Journal of Biological Chemistry.

[54]  N. Talbot,et al.  Independent Signaling Pathways Regulate Cellular Turgor during Hyperosmotic Stress and Appressorium-Mediated Plant Infection by Magnaporthe grisea , 1999, Plant Cell.

[55]  Y. Wei,et al.  Induction of vacuolar CaZ+‐ATPase and H+/Ca 2+ exchange activity in yeast mutants lacking Pmrl, the Golgi Ca2+‐ATPase , 1999, FEBS letters.

[56]  C. Nombela,et al.  Role of the Mitogen-Activated Protein Kinase Hog1p in Morphogenesis and Virulence of Candida albicans , 1999 .

[57]  M. Van Montagu,et al.  Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. , 1999, The Plant journal : for cell and molecular biology.

[58]  G. Ammerer,et al.  Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. , 1999, Molecular biology of the cell.

[59]  E. Revenkova,et al.  Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress , 1999, The EMBO journal.

[60]  M. Gustin,et al.  MAP Kinase Pathways in the YeastSaccharomyces cerevisiae , 1998, Microbiology and Molecular Biology Reviews.

[61]  A. Varma,et al.  PIRIFORMOSPORA INDICA, GEN. ET SP. NOV., A NEW ROOT-COLONIZING FUNGUS , 1998 .

[62]  C. Nombela,et al.  The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans , 1996, Journal of bacteriology.

[63]  R. Müller,et al.  Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. , 1995, Gene.

[64]  E. Winter,et al.  An osmosensing signal transduction pathway in yeast. , 1993, Science.

[65]  Acknowledgements , 1992, Experimental Gerontology.

[66]  W. Frommer,et al.  Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. , 1992, The EMBO journal.

[67]  M. Espelund,et al.  Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. , 1992, The Plant journal : for cell and molecular biology.

[68]  G. Fairchild,et al.  A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. , 1990, The New phytologist.

[69]  R. J. Porra,et al.  Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy , 1989 .

[70]  L. Adler,et al.  The Role of Glycerol in Osmotolerance of the Yeast Debaryomyces hansenii , 1988 .

[71]  Y. Wong,et al.  Localization of Mg-Chelatase and Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase Activities within Isolated, Developing Cucumber Chloroplasts. , 1984, Plant physiology.

[72]  I. D. Teare,et al.  Rapid determination of free proline for water-stress studies , 1973, Plant and Soil.

[73]  Rspm μgm Methods , 1972 .

[74]  C. Gostinčar,et al.  Fungal adaptation to extremely high salt concentrations. , 2011, Advances in applied microbiology.

[75]  R. Ahmad,et al.  Prospects for Saline Agriculture , 2002, Tasks for vegetation science.

[76]  C. Widmann,et al.  Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. , 1999, Physiological reviews.

[77]  R. Rao,et al.  Induction of vacuolar Ca 2-ATPase and H / Ca 2 exchange activity in yeast mutants lacking Pmr 1 , the Golgi Ca 2-ATPase , 1999 .

[78]  T. Petes Molecular genetics of yeast. , 1980, Annual review of biochemistry.

[79]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .