Discovering Hook Length Formulas by an Expansion Technique
暂无分享,去创建一个
[1] David Thomas,et al. The Art in Computer Programming , 2001 .
[2] William Y. C. Chen,et al. On Postnikov's hook length formula for binary trees , 2008, Eur. J. Comb..
[3] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[4] P. McGinn. Missed opportunities. , 2000, Hospitals & health networks.
[5] Jeffrey B. Remmel,et al. A Bijective Proof of the Hook Formula for the Number of Column Strict Tableaux with Bounded Entries , 1983, Eur. J. Comb..
[6] Frank Garvan. A q -product Tutorial for a q -series Maple Package , 1998, WWW 1998.
[7] Guo-Niu Han,et al. An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths , 2008, 0804.1849.
[8] Roland Bacher,et al. Hooks and powers of parts in partitions , 2001 .
[9] R. Stanley. Some combinatorial properties of hook lengths, contents, and parts of partitions , 2008, 0807.0383.
[10] Philippe Flajolet,et al. Varieties of Increasing Trees , 1992, CAAP.
[11] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[12] B. M. Fulk. MATH , 1992 .
[13] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[14] Guo-Niu Han,et al. Yet Another Generalization of Postnikov's Hook Length Formula for Binary Trees , 2008, SIAM J. Discret. Math..
[15] Dennis Stanton,et al. CRANKS AND T -CORES , 1990 .
[16] Andrei Okounkov,et al. Seiberg-Witten theory and random partitions , 2003, hep-th/0306238.
[17] Dennis Stanton,et al. An involution for Jacobi's identity , 1989, Discret. Math..
[18] J. Moon. Postnikov Identities and Seo ’ s Formulas , 2006 .
[19] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[20] I. G. MacDonald,et al. Affine root systems and Dedekind'sη-function , 1971 .
[21] D. Foata,et al. Combinatoire et Représentation du Groupe Symétrique , 1977 .
[22] Guo-Niu Han,et al. New hook length formulas for binary trees , 2008, Comb..
[23] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[24] Seunghyun Seo. A Combinatorial Proof of Postnikov's Identity and a Generalized Enumeration of Labeled Trees , 2005, Electron. J. Comb..
[25] Doron Zeilberger,et al. A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof , 1984, Discret. Math..
[26] Fu Liu,et al. (k, m)-Catalan numbers and hook length polynomials for plane trees , 2007, Eur. J. Comb..
[27] J. S. Frame,et al. The Hook Graphs of the Symmetric Group , 1954, Canadian Journal of Mathematics.
[28] Guo-Niu Han,et al. The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications , 2008, 0805.1398.
[29] H. Prodinger,et al. ON “ A NOTE ON THE DISTRIBUTION OF THE THREE TYPES OF NODES IN UNIFORM BINARY TREES ” BY , 1996 .
[30] Igor Pak,et al. A direct bijective proof of the hook-length formula , 1997, Discret. Math. Theor. Comput. Sci..
[31] Christine Bessenrodt,et al. On hooks of Young diagrams , 1998 .
[32] Donald E. Knuth,et al. The art of computer programming: sorting and searching (volume 3) , 1973 .
[33] A. Lascoux. Symmetric Functions and Combinatorial Operators on Polynomials , 2003 .
[34] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[35] H. Wilf,et al. A probabilistic proof of a formula for the number of Young tableaux of a given shape , 1979 .
[36] Dominique Foata,et al. Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers , 1974 .
[37] Christian Krattenthaler. Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1999, J. Comb. Theory, Ser. A.
[38] Guo-Niu Han,et al. Arbres minimax et polynômes d'André , 2001, Adv. Appl. Math..
[39] Ira M. Gessel,et al. A Refinement of Cayley's Formula for Trees , 2006, Electron. J. Comb..
[40] T. Amdeberhan. Differential operators, shifted parts, and hook lengths , 2008, 0807.2473.
[41] G. James,et al. The Representation Theory of the Symmetric Group , 2009 .