Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors

[1]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[2]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[3]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[4]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[5]  J. Norman,et al.  Radiative Transfer in an Array of Canopies1 , 1983 .

[6]  S. Running,et al.  Remote Sensing of Coniferous Forest Leaf Area , 1986 .

[7]  S. Running,et al.  Relationship of thematic mapper simulator data to leaf area index , 1987 .

[8]  C. Woodcock,et al.  The use of variograms in remote sensing. I - Scene models and simulated images. II - Real digital images , 1988 .

[9]  P. Curran The semivariogram in remote sensing: An introduction , 1988 .

[10]  D. Peddle,et al.  Spectral texture for improved class discrimination in complex terrain , 1989 .

[11]  Ramakrishna R. Nemani,et al.  Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation , 1989 .

[12]  W. J. Carper,et al.  The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data , 1990 .

[13]  W. Cohen,et al.  Semivariograms of digital imagery for analysis of conifer canopy structure. , 1990 .

[14]  Steven W. Running,et al.  Remote sensing of temperate coniferous forest leaf area index The influence of canopy closure, understory vegetation and background reflectance , 1990 .

[15]  S. Sides,et al.  Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic , 1991 .

[16]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[17]  J. Norman,et al.  Instrument for Indirect Measurement of Canopy Architecture , 1991 .

[18]  J. Chen,et al.  Defining leaf area index for non‐flat leaves , 1992 .

[19]  M. Fiorella,et al.  Determining successional stage of temperate coniferous forests with Landsat satellite data , 1993 .

[20]  S. Running,et al.  Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed leaf area index estimates , 1993 .

[21]  S. Running,et al.  8 – Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models , 1993 .

[22]  Gordon B. Bonan,et al.  Importance of leaf area index and forest type when estimating photosynthesis in boreal forests , 1993 .

[23]  A. Fischer A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters , 1994 .

[24]  P. Gong,et al.  Remote Sensing of Seasonal Leaf Area Index Across the Oregon Transect , 1994 .

[25]  B. St-Onge,et al.  Estimating forest stand structure from high resolution imagery using the directional variogram , 1995 .

[26]  F. Parmiggiani,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Michael A. Wulder,et al.  Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis , 1996 .

[28]  J. Chen Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands , 1996 .

[29]  D. Yocky Multiresolution wavelet decomposition image merger of landsat thematic mapper and SPOT panchromatic data , 1996 .

[30]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[31]  S. Franklin,et al.  High Spatial Resolution Optical Image Texture for Improved Estimation of Forest Stand Leaf Area Index , 1996 .

[32]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[33]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[34]  T. M. Lillesand,et al.  Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper , 1997 .

[35]  S. Running,et al.  Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active , 1998 .

[36]  Jean-Philippe Gastellu-Etchegorry,et al.  Sensitivity of Texture of High Resolution Images of Forest to Biophysical and Acquisition Parameters , 1998 .

[37]  Fernando Pellon de Miranda,et al.  The semivariogram in comparison to the co-occurrence matrix for classification of image texture , 1998, IEEE Trans. Geosci. Remote. Sens..

[38]  S. Franklin,et al.  Aerial Image Texture Information in the Estimation of Northern Deciduous and Mixed Wood Forest Leaf Area Index (LAI) , 1998 .

[39]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[40]  Xavier Otazu,et al.  Multiresolution-based image fusion with additive wavelet decomposition , 1999, IEEE Trans. Geosci. Remote. Sens..

[41]  S. T. Gower,et al.  Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems , 1999 .

[42]  S. Leblanc,et al.  A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis , 2000 .

[43]  R. Hall,et al.  Incorporating texture into classification of forest species composition from airborne multispectral images , 2000 .

[44]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[45]  S. Franklin Using spatial Co-occurrence texture to increase forest structure and species composition classification accuracy , 2001 .

[46]  T. Warner,et al.  SCALE AND TEXTURE IN DIGITAL IMAGE CLASSIFICATION , 2002 .

[47]  Per Jönsson,et al.  Seasonality extraction by function fitting to time-series of satellite sensor data , 2002, IEEE Trans. Geosci. Remote. Sens..

[48]  Conghe Song,et al.  The spatial manifestation of forest succession in optical imagery: The potential of multiresolution imagery , 2002 .

[49]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[50]  N. Breda Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. , 2003, Journal of experimental botany.

[51]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[52]  R. Lacaze,et al.  Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption , 2003 .

[53]  Conghe Song,et al.  Estimating Tree Crown Size from Multiresolution Remotely Sensed Imagery , 2003 .

[54]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[55]  R. Colombo,et al.  Retrieval of leaf area index in different vegetation types using high resolution satellite data , 2003 .

[56]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[57]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[58]  F. Baret,et al.  Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling , 2004 .

[59]  R. Latifovic,et al.  Large area forest classification and biophysical parameter estimation using the 5-Scale canopy reflectance model in Multiple-Forward-Mode , 2004 .

[60]  Anne Puissant,et al.  The utility of texture analysis to improve per‐pixel classification for high to very high spatial resolution imagery , 2005 .

[61]  Timothy A. Warner,et al.  Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery , 2005 .

[62]  J. Mustard,et al.  Green leaf phenology at Landsat resolution: Scaling from the field to the satellite , 2006 .

[63]  Oliver Sonnentag,et al.  Leaf area index measurements at Fluxnet-Canada forest sites , 2006 .

[64]  K. Soudani,et al.  Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands , 2006 .

[65]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[66]  P. Defourny,et al.  Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery , 2006 .

[67]  D. Ellsworth,et al.  Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2 , 2007 .

[68]  Conghe Song,et al.  Estimating tree crown size with spatial information of high resolution optical remotely sensed imagery , 2007 .

[69]  Hyunseok Kim,et al.  Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO 2 , 2007 .

[70]  C. Song,et al.  Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index , 2008 .

[71]  F. Baret,et al.  Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products , 2008 .

[72]  Paul C. Stoy,et al.  Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements , 2008 .

[73]  Robert E. Wolfe,et al.  An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series , 2008, IEEE Geoscience and Remote Sensing Letters.

[74]  Joanne C. White,et al.  Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. , 2009 .

[75]  Conghe Song,et al.  Estimating average tree crown size using spatial information from Ikonos and QuickBird images: Across-sensor and across-site comparisons , 2010 .

[76]  N. Delbart,et al.  A satellite-based method for monitoring seasonality in the overstory leaf area index of Siberian larch forest , 2010 .

[77]  Frédéric Baret,et al.  A multisensor fusion approach to improve LAI time series , 2011 .