Combinatorics and Genus of Tropical Intersections and Ehrhart Theory

Let $g_1,\dots,g_k$ be tropical polynomials in $n$ variables with Newton polytopes $P_1,\dots,\allowbreak P_k$. We study combinatorial questions on the intersection of the tropical hypersurfaces defined by $g_1,\dots,g_k$, such as the $f$-vector, the number of unbounded faces, and (in the case of a curve) the genus. Our point of departure is Vigeland's work [Tropical complete intersection curves, preprint, arXiv:math/0711.1962, 2007] which considered the special case $k=n-1$ and where all Newton polytopes are standard simplices. We generalize these results to arbitrary $k$ and arbitrary Newton polytopes $P_1,\dots,P_k$. This provides new formulas for the number of faces and the genus in terms of mixed volumes. By establishing some aspects of a mixed version of Ehrhart theory we show that the genus of a tropical intersection curve equals the genus of a toric intersection curve corresponding to the same Newton polytopes.

[1]  Magnus Dehli Vigeland,et al.  Tropical complete intersection curves , 2007, 0711.1962.

[2]  Eric Katz A Tropical Toolkit , 2006 .

[3]  Grigory Mikhalkin Decomposition into pairs-of-pants for complex algebraic hypersurfaces , 2002 .

[4]  J. Reeve On the Volume of Lattice Polyhedra , 1957 .

[5]  David Mumford,et al.  Toroidal Embeddings I , 1973 .

[6]  Bernd Siebert,et al.  Toric degenerations of toric varieties and tropical curves , 2004 .

[7]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[8]  G. Mikhalkin Enumerative tropical algebraic geometry in R^2 , 2003, math/0312530.

[9]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[10]  P. McMullen Valuations and Euler-Type Relations on Certain Classes of Convex Polytopes , 1977 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[13]  Hannah Markwig,et al.  The numbers of tropical plane curves through points in general position , 2005, math/0504390.

[14]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[15]  Alicia Dickenstein,et al.  Tropical Discriminants , 2005, math/0510126.

[16]  Eugenii Shustin,et al.  Welschinger invariant and enumeration of real rational curves , 2003 .

[17]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[18]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[19]  Frederic Bihan,et al.  EULER CHARACTERISTIC OF REAL NONDEGENERATE TROPICAL COMPLETE INTERSECTIONS , 2007, 0710.1222.

[20]  A. Khovanskii Newton polyhedra and the genus of complete intersections , 1978 .

[21]  Jan Draisma A tropical approach to secant dimensions , 2006 .

[22]  William J. Cook,et al.  On integer points in polyhedra , 1992, Comb..

[23]  U. Betke,et al.  Zerlegungen und Bewertungen von Gitterpolytopen. , 1985 .

[24]  P. McMullen Valuations and Dissections , 1993 .

[25]  G. Mikhalkin Enumerative tropical algebraic geometry , 2003 .

[26]  Douglas Lind,et al.  Non-archimedean amoebas and tropical varieties , 2004, math/0408311.

[27]  Sam Payne,et al.  Piecewise polynomials, Minkowski weights, and localization on toric varieties , 2007 .

[28]  B. Sturmfels,et al.  ELIMINATION THEORY FOR TROPICAL VARIETIES , 2007, 0704.3471.

[29]  Grigory Mikhalkin Tropical geometry and its applications , 2006 .

[30]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[31]  I. G. MacDonald,et al.  The volume of a lattice polyhedron , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[33]  David E Speyer Tropical Linear Spaces , 2008, SIAM J. Discret. Math..

[34]  David E. Speyer,et al.  The tropical Grassmannian , 2003, math/0304218.