Micro-structuring the surface reactivity of a borosilicate glass via thermal poling

Abstract Thermal poling was proven successful to induce second order nonlinear properties and concurrent modification of composition, structure and chemical reactivity in glasses. With current efforts to reduce devices sizes in components employing such attributes, means to control changes at the micrometer scale are needed. We present a micro-imprinting poling process to locally tailor surface properties of a glass. Measurements using infrared, Raman and second harmonic generation microscopies confirm that changes in glass structure associated with an induced static electric field are responsible for the enhanced surface reactivity that is successfully controlled at the micrometer scale.

[1]  A. Tenney,et al.  Last minute addition)VIBRATIONAL SPECTRA OF VAPOR DEPOSITED BINARY BOROSILICATE GLASSES , 1972 .

[2]  R. Thomas Determination of the H3BO3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy , 2002 .

[3]  Mechanism and Kinetics of Na+ Ion Depletion under the Anode during Electro-thermal Poling of a Bioactive Glass , 2008, 0810.0429.

[4]  D. E. Carlson,et al.  Electrode “Polarization” in Alkali‐Containing Glasses , 1972 .

[5]  Andrey A. Lipovskii,et al.  Imprinting phase/amplitude patterns in glasses with thermal poling , 2010 .

[6]  Thierry Cardinal,et al.  Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials , 2016 .

[7]  S. Grigull,et al.  Ion Drift Processes in Pyrex‐Type Alkali‐Borosilicate Glass during Anodic Bonding , 1998 .

[8]  W. White,et al.  Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates , 1975 .

[9]  D. Carlson Ion Depletion of Glass at a Blocking Anode: I, Theory and Experimental Results for Alkali Silicate Glasses , 1974 .

[10]  K. J. Keller Breakdown and electric conductivity of glass , 1951 .

[11]  D. Talaga,et al.  Hyper-Raman macro- and micro-spectroscopy in materials: Towards high quality signals and good spatial resolution , 2006 .

[12]  W. Lanford,et al.  Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental , 1988 .

[13]  C. Achete,et al.  Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential , 1993 .

[14]  K. Yamashita,et al.  Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling , 1996 .

[15]  P. Brunkov,et al.  Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites , 2008 .

[16]  C. Bethea Electric field induced second harmonic generation in glass. , 1975, Applied optics.

[17]  W. Konijnendijk The structure of borosilicate glasses , 1975 .

[18]  D. Carlson Anodic Proton Injection in Glasses , 1974 .

[19]  G. Wallis,et al.  Field Assisted Glass‐Metal Sealing , 1969 .

[20]  Evelyne Fargin,et al.  Structural Rearrangements and Second-Order Optical Response in the Space Charge Layer of Thermally Poled Sodium−Niobium Borophosphate Glasses , 2007 .

[21]  R. A. Myers,et al.  Large second-order nonlinearity in poled fused silica. , 1991, Optics letters.

[22]  Thomas G. Alley,et al.  Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica , 1999 .

[23]  A. Lipovskii,et al.  Formation and 2D-patterning of silver nanoisland film using thermal poling and out-diffusion from glass , 2013 .

[24]  Steven R. J. Brueck,et al.  Dynamics of second-harmonic generation in fused silica , 1994 .

[25]  D. Talaga,et al.  Trapped Molecular and Ionic Species in Poled Borosilicate Glasses: Toward a Rationalized Description of Thermal Poling in Glasses , 2014 .

[26]  M. Dussauze,et al.  Polarization mechanisms and structural rearrangements in thermally poled sodium-alumino phosphate glasses , 2010 .

[27]  K. Krishnan The Raman spectrum of boric acid , 1963 .

[28]  S. Grigull,et al.  In situ investigation of ion drift processes in glass during anodic bonding , 1998 .

[29]  G. E. Peterson,et al.  Structure and phonon spectra of SiO2, B2O3 and mixed SiO2B2O3 glasses , 1980 .

[30]  O. Uteza,et al.  Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling , 2015 .

[31]  Kathleen Richardson,et al.  Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling , 2015 .

[32]  K. Yamashita,et al.  Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition. , 2003, Journal of biomedical materials research. Part A.

[33]  K. Yamashita,et al.  Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics. , 2010, Journal of biomedical materials research. Part A.

[34]  William B. White,et al.  Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses , 1981 .

[35]  A. Lipovskii,et al.  How Does Thermal Poling Produce Interstitial Molecular Oxygen in Silicate Glasses , 2015 .

[36]  Peter G. Kazansky,et al.  Thermally poled glass: frozen-in electric field or oriented dipoles? , 1994 .

[37]  P. Hagenmuller,et al.  Etudes par spectroscopie Raman et par RMN des verres du système B2O3SiO2Li2O , 1981 .

[38]  E. Kamitsos,et al.  Infrared-reflectance spectra of heat-treated sol-gel-derived silica. , 1993, Physical review. B, Condensed matter.

[39]  B. Roling,et al.  On the mechanism of field-induced mixed ionic–electronic transport during electro-thermal poling of a bioactive sodium–calcium phosphosilicate glass , 2014 .

[40]  N. Godbout,et al.  Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity , 2002 .

[41]  A. Lipovskii,et al.  Nanoprofiling of alkali-silicate glasses by thermal poling , 2015 .

[42]  D. Ehrt,et al.  Thermal history of a low alkali borosilicate glass probed by infrared and Raman spectroscopy , 2006 .

[43]  Thierry Cardinal,et al.  Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties , 2012 .

[44]  G. Chryssikos,et al.  Infrared reflectance spectra of lithium borate glasses , 1990 .

[45]  D. Carlson,et al.  Ion Depletion of Glass at a Blocking Anode: II, Properties of Ion‐Depleted Glasses , 1974 .

[46]  M. Dussauze,et al.  Large second-harmonic generation of thermally poled sodium borophosphate glasses. , 2005, Optics express.

[47]  M. Kuittinen,et al.  Electric field imprinting of sub-micron patterns in glass–metal nanocomposites , 2008, Nanotechnology.

[48]  A. Lipovskii,et al.  Bleaching versus poling: Comparison of electric field induced phenomena in glasses and glass-metal nanocomposites , 2011 .

[49]  R. Maeda,et al.  Electrostatic Imprint Process for Glass , 2008 .

[50]  V. Araújo,et al.  Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass , 2008 .