Getting to Grips with Neuronal Diversity

The concept of a neuronal type can be quite slippery. Just when you think you’ve got it in hand, it can jump out of your grasp like the soap in the shower. This probably explains why so many articles in recent years have claimed to address the molecular mechanisms that generate retinal diversity and yet have ended up focusing on just a few of its many neuronal types. The aim of this article is to set out the problems inherent in the concept of a neuronal type and discuss some of the ways in which a particular kind of spatial organization, the neuronal mosaic, can provide a tool to get to grips with it.

[1]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  L. Missotten,et al.  Synaptic Contacts of the Horizontal Cells in the Retina of the Marine Teleost, Callionymus Iyra L. , 1979, The Journal of comparative neurology.

[3]  P. Hitchcock Tracer coupling among regenerated amacrine cells in the retina of the goldfish , 1997, Visual Neuroscience.

[4]  B. Ulfhake,et al.  Postnatal development of cat hind limb motoneurons supplying the intrinsic muscles of the foot sole. , 1991, Brain research. Developmental brain research.

[5]  R. Williams,et al.  Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  Helga Kolb,et al.  Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study , 1981, Vision Research.

[7]  R. W. Rodieck The density recovery profile: A method for the analysis of points in the plane applicable to retinal studies , 1991, Visual Neuroscience.

[8]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[9]  S. Bloomfield,et al.  Light-induced modulation of coupling between AII amacrine cells in the rabbit retina , 1997, Visual Neuroscience.

[10]  L. Peichl,et al.  Alpha ganglion cells in mammalian retinae: Common properties, species differences, and some comments on other ganglion cells , 1991, Visual Neuroscience.

[11]  J. Cook,et al.  Regular mosaics of large displaced and non‐displaced ganglion cells in the retina of a cichlid fish , 1991, The Journal of comparative neurology.

[12]  D. I. Vaney,et al.  Patterns of neuronal coupling in the retina , 1994, Progress in Retinal and Eye Research.

[13]  R. Williams,et al.  The control of neuron number. , 1988, Annual review of neuroscience.

[14]  P. R. Johns Growth of the adult goldfish eye. III. Source of the new retinal cells , 1977, The Journal of comparative neurology.

[15]  Terry Bossomaier,et al.  Vision: The theory of comparative eye design , 1991 .

[16]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  B. Boycott,et al.  Horizontal Cells in the Monkey Retina: Cone connections and dendritic network , 1989, The European journal of neuroscience.

[18]  S. Bloomfield,et al.  A comparison of receptive field and tracer coupling size of horizontal cells in the rabbit retina , 1995, Visual Neuroscience.

[19]  Vision: Is there more than meets the eye? , 1991 .

[20]  H. Wässle,et al.  Amacrine cells in the ganglion cell layer of the cat retina , 1987, The Journal of comparative neurology.

[21]  D. Dacey,et al.  A coupled network for parasol but not midget ganglion cells in the primate retina , 1992, Visual Neuroscience.

[22]  E. Mecke,et al.  Ganglion cells in the frog retina: Discriminant analysis of histological classes , 1989, Vision Research.

[23]  R. Marc Spatial organization of neurochemically classified interneurons of the goldfish retina—I. Local patterns , 1982, Vision Research.

[24]  T. A. Podugolnikova Morphology of bipolar cells and their participation in spatial organization of the inner plexiform layer of jack mackerel retina , 1985, Vision Research.

[25]  R. M. Gaze,et al.  The growth of the retina in Xenopus laevis: an autoradiographic study. , 1971, Journal of embryology and experimental morphology.

[26]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[27]  J. Cook,et al.  Large retinal ganglion cells in the channel catfish (Ictalurus punctatus): Three types with distinct dendritic stratification patterns form similar but independent mosaics , 1995, The Journal of comparative neurology.

[28]  J. Stone Chapter 1 The origins of the cells of vertebrate retina , 1988 .

[29]  J. Cook,et al.  Somatic and Dendritic Mosaics Formed by Large Ganglion Cells in the Retina of the Common House Gecko (Hemidactylus frenatus) , 1998, Brain, Behavior and Evolution.

[30]  R. M. Gaze,et al.  Spatio‐temporal patterns of retinal ganglion cell death during Xenopus development , 1992, The Journal of comparative neurology.

[31]  H. Wässle,et al.  Immunocytochemical identification of cone bipolar cells in the rat retina , 1995, The Journal of comparative neurology.

[32]  J. Stone,et al.  Naming of neurones. Classification and naming of cat retinal ganglion cells. , 1977, Brain, behavior and evolution.

[33]  J. Cook,et al.  Large retinal ganglion cells that form independent, regular mosaics in the ranid frogs Rana esculenta and Rana pipiens , 1997, Visual Neuroscience.

[34]  DI Vaney,et al.  Territorial organization of direction-selective ganglion cells in rabbit retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  R. W. Rodieck,et al.  Spatial density and distribution of choline acetyltransferase immunoreactive cells in human, macaque, and baboon retinas , 1992, The Journal of comparative neurology.

[36]  R. Williams,et al.  Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat's optic nerve , 1986, The Journal of comparative neurology.

[37]  Bernd Fritzsch ONTOGENETIC CLUES TO THE PHYLOGENY OF THE VISUAL SYSTEM , 1991 .

[38]  Biplexiform ganglion cells, characterized by dendrites in both outer and inner plexiform layers, are regular, mosaic-forming elements of teleost fish retinae. , 1996, Visual neuroscience.

[39]  S. Sullivan,et al.  Expression of rod and cone visual pigments in goldfish and zebrafish: A rhodopsin-like gene is expressed in cones , 1993, Neuron.

[40]  S. Bloomfield,et al.  Dendritic arbors of large-field ganglion cells show scaled growth during expansion of the goldfish retina: a study of morphometric and electrotonic properties , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  R. Northcutt,et al.  Evolution of the Vertebrate Central Nervous System: Patterns and Processes , 1984 .

[42]  P. Bagnoli,et al.  The Changing Visual System , 1991, NATO ASI Series.

[43]  J. Cook,et al.  Spatial properties of retinal mosaics: An empirical evaluation of some existing measures , 1996, Visual Neuroscience.

[44]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[45]  S. Hidaka,et al.  Lateral gap junction connections between retinal amacrine cells summating sustained responses , 1993, Neuroreport.

[46]  J. Stone,et al.  The interpretation of variation in the classification of nerve cells. , 1980, Brain, behavior and evolution.

[47]  G. Entine,et al.  Visual pigments of frog and tadpole (Rana pipiens). , 1968, Vision research.

[48]  S. Sharma,et al.  The visual system of the channel catfish (ictalurus punctatus). I. Retinal ganglion cell morphology , 1986, The Journal of comparative neurology.

[49]  J. Cook,et al.  Independent mosaics of large inner‐ and outer‐stratified ganglion cells in the goldfish retina , 1992, The Journal of comparative neurology.

[50]  N. Vardi,et al.  Simulation of the Aii amacrine cell of mammalian retina: Functional consequences of electrical coupling and regenerative membrane properties , 1995, Visual Neuroscience.

[51]  T. Reh The Regulation of Neuronal Production during Retinal Neurogenesis , 1989 .

[52]  G Buchsbaum,et al.  How retinal microcircuits scale for ganglion cells of different size , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  D. I. Vaney,et al.  Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin , 1991, Neuroscience Letters.

[54]  P. Hitchcock Exclusionary dendritic interactions in the retina of the goldfish. , 1989, Development.

[55]  S. Bloomfield,et al.  A comparison of receptive-field and tracer-coupling size of amacrine and ganglion cells in the rabbit retina , 1997, Visual Neuroscience.

[56]  J. Cook,et al.  Gap junctions in the vertebrate retina , 1995, Microscopy research and technique.

[57]  J. Nathans,et al.  Molecular biology of retinal ganglion cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. Mastronarde Interactions between ganglion cells in cat retina. , 1983, Journal of neurophysiology.

[59]  D. Becker,et al.  Role of gap junctions in the development of the preimplantation mouse embryo , 1995, Microscopy research and technique.

[60]  L. Chalupa,et al.  Development of neuropeptide Y immunoreactive amacrine and ganglion cells in the pre‐ and postnatal cat retina , 1995, The Journal of comparative neurology.

[61]  R W Rodieck,et al.  Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. , 1983, Brain, behavior and evolution.

[62]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[63]  B. Finlay,et al.  Development of the Vertebrate Retina , 2012, Perspectives in Vision Research.

[64]  Paul Witkovsky,et al.  Chapter 10 Functional roles of dopamine in the vertebrate retina , 1991 .

[65]  V. Perry Dendritic Interactions between Cell Populations in the Developing Retina , 1989 .

[66]  J. Cook,et al.  Large retinal ganglion cells in the pipid frog Xenopus laevis form independent, regular mosaics resembling those of teleost fishes , 1997, Visual Neuroscience.

[67]  J. Hollyfield,et al.  Retinal ganglion cell morphology in the frog, Rana pipiens , 1987, The Journal of comparative neurology.

[68]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[69]  L. Chalupa,et al.  Subgroup of alpha ganglion cells in the adult cat retina is immunoreactive for somatostatin , 1991, The Journal of comparative neurology.

[70]  H. Kolb,et al.  The organization of the turtle inner retina. I. ON‐ and OFF‐center pathways , 1995, The Journal of comparative neurology.

[71]  L. Chalupa,et al.  Somatostatin‐immunoreactive cells in the adult cat retina , 1990, The Journal of comparative neurology.

[72]  B. Boycott,et al.  Alpha ganglion cells in mammalian retinae , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.