Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's

We present a scaling theory for fully-depleted, cylindrical MOSFET's. This theory was derived from the cylindrical form of Poisson's equation by assuming a parabolic potential in the radial direction. Numerical device simulation data for subthreshold slope and DIBL were compared to the model to validate the formula. By employing the scaling theory a comparison with double-gate (DG) MOSFET's was carried out illustrating an improvement of up to 40% in the minimum effective channel length for the cylindrical device.