Thermodynamic calculations using a simulated annealing optimization algorithm
暂无分享,去创建一个
Juan Gabriel Segovia-Hernández | Adrian Bonilla-Petriciolet | Florianne Castillo-Borja | Ulises I. Bravo-Sánchez | J. Segovia-Hernández | A. Bonilla-Petriciolet | F. Castillo-Borja | U. I. Bravo-Sánchez | J. Segovia‐Hernández
[1] R. P. Marques,et al. Modeling and analysis of the isothermal flash problem and its calculation with the simulated annealing algorithm , 2001 .
[2] M. Stadtherr,et al. Reliable Nonlinear Parameter Estimation in VLE Modeling , 2000 .
[3] G. Froment,et al. A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models , 1998 .
[4] N. Aslam,et al. Sensitivity of azeotropic states to activity coefficient model parameters and system variables , 2006 .
[5] Masao Fukushima,et al. Hybrid simulated annealing and direct search method for nonlinear unconstrained global optimization , 2002, Optim. Methods Softw..
[6] H. Gregor,et al. MOLAL ACTIVITY COEFFICIENTS OF METHANE— AND ETHANESULFONIC ACIDS AND THEIR SALTS , 1963 .
[7] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[8] Mark A. Stadtherr,et al. Modeling of Activity Coefficients of Aqueous Solutions of Quaternary Ammonium Salts with the Electrolyte-NRTL Equation , 2004 .
[9] Robert W. Maier,et al. Reliable computation of homogeneous azeotropes , 1998 .
[10] S. T. Harding,et al. Locating all homogeneous azeotropes in multicomponent mixtures , 1997 .
[11] A. Bonilla-Petriciolet,et al. Performance of Stochastic Global Optimization Methods in the Calculation of Phase Stability Analyses for Nonreactive and Reactive Mixtures , 2006 .
[12] Alexander H. G. Rinnooy Kan,et al. A stochastic method for global optimization , 1982, Math. Program..
[13] Marcelo Castier,et al. Automatic implementation of thermodynamic models for reliable parameter estimation using computer algebra , 2002 .
[14] H. Renon. Models for excess properties of electrolyte solutions: molecular bases and classification, needs and trends for new developments , 1996 .
[15] F. Pessoa,et al. Parameter estimation of thermodynamic models for high-pressure systems employing a stochastic method of global optimization , 2000 .
[16] Yushan Zhu,et al. A reliable prediction of the global phase stability for liquid-liquid equilibrium through the simulated annealing algorithm: Application to NRTL and UNIQUAC equations , 1999 .
[17] S. Lindenbaum,et al. Structural Effects on the Osmotic and Activity Coefficients of the Quaternary Ammonium Halides in Aqueous Solutions at 25°1 , 1966 .
[18] J. K. Axmann,et al. Evolutionary algorithms for the optimization of Modified UNIFAC parameters , 1998 .
[19] L. E. Baker,et al. Gibbs energy analysis of phase equilibria , 1982 .
[20] M. Stadtherr,et al. Deterministic global optimization for error-in-variables parameter estimation , 2002 .
[21] Patrick Siarry,et al. Tabu Search applied to global optimization , 2000, Eur. J. Oper. Res..
[22] Gade Pandu Rangaiah,et al. Tabu search for global optimization of continuous functions with application to phase equilibrium calculations , 2003, Comput. Chem. Eng..
[23] Dr. Zbigniew Michalewicz,et al. How to Solve It: Modern Heuristics , 2004 .
[24] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[25] M. Montaz Ali,et al. A direct search variant of the simulated annealing algorithm for optimization involving continuous variables , 2002, Comput. Oper. Res..
[26] S. Bandyopadhyay,et al. Modelling Vapour − Liquid Equilibrium of CO2 in Aqueous N‐Methyldiethanolamine through the Simulated Annealing Algorithm , 2008 .
[27] K. Kobe. The properties of gases and liquids , 1959 .
[28] M. Michelsen. The isothermal flash problem. Part I. Stability , 1982 .
[29] Nélio Henderson,et al. Prediction of critical points: A new methodology using global optimization , 2004 .
[30] G. P. Rangaiah,et al. A Study of Equation-Solving and Gibbs Free Energy Minimization Methods for Phase Equilibrium Calculations , 2002 .
[31] Sandro Ridella,et al. Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.
[32] S. Lindenbaum,et al. Osmotic and Activity Coefficients for the Symmetrical Tetraalkyl Ammonium Halides in Aqueous Solution at 25°1 , 1964 .
[33] J. Gmehling,et al. Vapor-liquid equilibrium data collection. Aqueous-organic systems , 1977 .
[34] J. Smith,et al. Introduction to chemical engineering thermodynamics , 1949 .
[35] M. Stadtherr,et al. Enhanced Interval Analysis for Phase Stability: Cubic Equation of State Models , 1998 .
[36] Angelo Lucia,et al. Simulation of refrigerant phase equilibria , 1997 .
[37] G. P. Rangaiah. Evaluation of genetic algorithms and simulated annealing for phase equilibrium and stability problems , 2001 .
[38] Manish K. Singh,et al. Genetic algorithm to estimate interaction parameters of multicomponent systems for liquid-liquid equilibria , 2005, Comput. Chem. Eng..
[39] Nélio Henderson,et al. Novel approach for the calculation of critical points in binary mixtures using global optimization , 2004 .
[40] William R. Esposito,et al. Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach , 1998 .
[41] S. T. Harding,et al. Phase stability with cubic equations of state: Global optimization approach , 2000 .
[42] J. Gaube. J. Gmehling, U. Onken: Vapor‐Liquid Equilibrium Data Collection, Aqueous‐Organic Systems, in der Reihe: Chemistry Data Series, Vol. I, Part. 1. DECHEMA, Frankfurt 1977. 698 Seiten, Preis: DM 120,‐ , 1978 .
[43] Gade Pandu Rangaiah,et al. Implementation and evaluation of random tunneling algorithm for chemical engineering applications , 2006, Comput. Chem. Eng..
[44] Herbert I. Britt,et al. Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems , 1982 .