Computation of optimal transport on discrete metric measure spaces
暂无分享,去创建一个
Martin Rumpf | Bernhard Schmitzer | Stefan Simon | Matthias Erbar | Bernhard Schmitzer | M. Rumpf | Matthias Erbar | Stefan Simon
[1] JOSÉ A. CARRILLO,et al. Displacement convexity for the entropy in semi-discrete non-linear Fokker–Planck equations , 2018, European Journal of Applied Mathematics.
[2] Leonidas J. Guibas,et al. Continuous-Flow Graph Transportation Distances , 2016, ArXiv.
[3] Filippo Santambrogio,et al. Optimal Transport for Applied Mathematicians , 2015 .
[4] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[5] A. Mielke. Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .
[6] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[7] J. Maas,et al. On the geometry of geodesics in discrete optimal transport , 2018, Calculus of variations and partial differential equations.
[8] Peter Gladbach,et al. Scaling Limits of Discrete Optimal Transport , 2018, SIAM J. Math. Anal..
[9] Alexander Mielke,et al. A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .
[10] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[11] Leonidas J. Guibas,et al. Earth mover's distances on discrete surfaces , 2014, ACM Trans. Graph..
[12] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[13] Gabriel Peyré,et al. Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..
[14] S. Chow,et al. Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph , 2011, Archive for Rational Mechanics and Analysis.
[15] Brian Wyvill,et al. Robust iso-surface tracking for interactive character skinning , 2014, ACM Trans. Graph..
[16] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[17] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[18] J. Maas. Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.
[19] David K. Smith. Network Flows: Theory, Algorithms, and Applications , 1994 .
[20] Jan Maas,et al. Gromov-Hausdorff Convergence of Discrete Transportation Metrics , 2012, SIAM J. Math. Anal..
[21] J. Maas,et al. Ricci Curvature of Finite Markov Chains via Convexity of the Entropy , 2011, 1111.2687.
[22] J. Maas,et al. Gradient flow structures for discrete porous medium equations , 2012, 1212.1129.
[23] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[24] Montacer Essid,et al. Quadratically-Regularized Optimal Transport on Graphs , 2017, SIAM J. Sci. Comput..
[25] Matthias Liero,et al. On gradient structures for Markov chains and the passage to Wasserstein gradient flows , 2013, Networks Heterog. Media.
[26] C. Villani. Optimal Transport: Old and New , 2008 .
[27] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[28] Matthias Erbar. Gradient flows of the entropy for jump processes , 2012, 1204.2190.