Discontinuities without discontinuity : the Weakly-enforced Slip Method

Abstract Tectonic faults are commonly modelled as Volterra or Somigliana dislocations in an elastic medium. Various solution methods exist for this problem. However, the methods used in practice are often limiting, motivated by reasons of computational efficiency rather than geophysical accuracy. A typical geophysical application involves inverse problems for which many different fault configurations need to be examined, each adding to the computational load. In practice, this precludes conventional finite-element methods, which suffer a large computational overhead on account of geometric changes. This paper presents a new non-conforming finite-element method based on weak imposition of the displacement discontinuity. The weak imposition of the discontinuity enables the application of approximation spaces that are independent of the dislocation geometry, thus enabling optimal reuse of computational components. Such reuse of computational components renders finite-element modeling a viable option for inverse problems in geophysical applications. A detailed analysis of the approximation properties of the new formulation is provided. The analysis is supported by numerical experiments in 2D and 3D.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[3]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[4]  A. A. Tronin,et al.  Remote sensing and earthquakes: A review , 2006 .

[5]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[6]  C. M. Elliott,et al.  Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces , 1987 .

[7]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Susanne C. Brenner,et al.  Chapter 4 Finite Element Methods , 2004 .

[10]  Ian Parsons,et al.  Surface deformation due to shear and tensile faults in a half-space , 1986 .

[11]  J. Z. Zhu,et al.  The finite element method , 1977 .

[12]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[13]  Y. Okada Internal deformation due to shear and tensile faults in a half-space , 1992, Bulletin of the Seismological Society of America.

[14]  Endre Süli,et al.  Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem , 2001 .

[15]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[16]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[17]  Susanne C. Brenner,et al.  Finite Element Methods , 2000 .

[18]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[19]  Brummelen van Eh,et al.  Flux evaluation in primal and dual boundary-coupled problems , 2011 .

[20]  Y. Kagan,et al.  Earthquakes Cannot Be Predicted , 1997, Science.

[21]  Arthur Raefsky,et al.  A simple and efficient method for introducing faults into finite element computations , 1981 .

[22]  R. Hanssen,et al.  Overview of a range of solution methods for elastic dislocation problems in geophysics , 2013 .

[23]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .