Well-Stratified Linked Data for Well-Behaved Data Citation

In this paper we analyse the functional requirements of linked data citation and identify a minimal set of operations and primitives needed to realize such task. Citing linked data implies solving a series of data provenance issues and finding a way to identify data subsets. Those two tasks can be handled defining a simple type system inside data and verifying it with a type checker, which is significantly less complex than interpreting reified RDF statements and can be implemented in a non data invasive way. Finally we suggest that data citation should be handled outside of the data, possibly with an ad-hoc language.

[1]  Tom Heath,et al.  Linked Data: Evolving the Web into a Global Data Space , 2011, Linked Data.

[2]  Pascal Hitzler,et al.  Formalizing Ontology Alignment and its Operations with Category Theory , 2006, FOIS.

[3]  Nigel Shadbolt,et al.  Provenance in Linked Data Integration , 2010, LDSI@FIA.

[4]  Vladimiro Sassone,et al.  Structural operational semantics for stochastic and weighted transition systems , 2013, Inf. Comput..

[5]  Marino Miculan,et al.  A CSP implementation of the bigraph embedding problem , 2014, ArXiv.

[6]  Roberto Bruni,et al.  On GS-Monoidal Theories for Graphs with Nesting , 2010, Graph Transformations and Model-Driven Engineering.

[7]  Gregor Engels,et al.  Encapsulated hierarchical graphs, graph types, and meta types , 1995, SEGRAGRA.

[8]  Qing Liu,et al.  Linked Data Provenance: State of the Art and Challenges , 2015, AWC.

[9]  Gianmaria Silvello A Methodology for Citing Linked Open Data Subsets , 2015, D Lib Mag..

[10]  Mercè Crosas,et al.  The Evolution of Data Citation: From Principles to Implementation , 2014 .

[11]  Jeremy J. Carroll,et al.  Named graphs, provenance and trust , 2005, WWW '05.

[12]  Marino Miculan,et al.  Structural operational semantics for non-deterministic processes with quantitative aspects , 2014, Theor. Comput. Sci..

[13]  Marino Miculan,et al.  Bigraphs reloaded : a presheaf presentation , 2013 .

[14]  Michael Hausenblas,et al.  Describing linked datasets with the VoID vocabulary , 2011 .

[15]  Marino Miculan,et al.  GSOS for non-deterministic processes with quantitative aspects , 2014, QAPL.

[16]  Marco Peressotti,et al.  Stratifying Semantic Data for Citation and Trust: An Introduction to RDFDF , 2016, IRCDL.

[17]  Sanjeev Khanna,et al.  Why and Where: A Characterization of Data Provenance , 2001, ICDT.

[18]  Ian Horrocks,et al.  From SHIQ and RDF to OWL: the making of a Web Ontology Language , 2003, J. Web Semant..

[19]  Gabriel Ciobanu,et al.  Minimal type inference for Linked Data consumers , 2015, J. Log. Algebraic Methods Program..

[20]  Robin Milner,et al.  The Space and Motion of Communicating Agents , 2009 .

[21]  Paul T. Groth,et al.  TripleProv: efficient processing of lineage queries in a native RDF store , 2014, WWW.

[22]  Thomas T. Hildebrandt,et al.  Dynamic Ontologies and Semantic Web Rules as Bigraphical Reactive Systems , 2013, WS-FM.

[23]  Alessio Mansutti,et al.  Distributed execution of bigraphical reactive systems , 2015, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[24]  Alessio Mansutti,et al.  Multi-agent Systems Design and Prototyping with Bigraphical Reactive Systems , 2014, DAIS.

[25]  Micah Altman,et al.  An introduction to the joint principles for data citation , 2015 .

[26]  Yogesh L. Simmhan,et al.  A survey of data provenance techniques , 2005 .