I do it my way: regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum

In order to utilize different nitrogen sources and to survive situations of nitrogen limitation, microorganisms have developed several mechanisms to adapt their metabolism to changes in the nitrogen supply. In this communication, recent advances in our knowledge of ammonium uptake, its assimilation, and connected regulatory systems in Corynebacterium glutamicum are discussed with respect to the situation in the bacterial model organisms Escherichia coli and Bacillus subtilis. The regulatory network of nitrogen control in C. glutamicum differs substantially from that in these bacteria, for example, by the presence of AmtR, the unique "master regulator" of nitrogen control, the absence of a NtrB/NtrC two-component signal transduction system, and a different sensing mechanism in C. glutamicum.

[1]  Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. , 1999, FEMS microbiology letters.

[2]  L. Wray,et al.  Bacillus subtilis Glutamine Synthetase Controls Gene Expression through a Protein-Protein Interaction with Transcription Factor TnrA , 2001, Cell.

[3]  S. Kustu,et al.  Sensing of Nitrogen Limitation by Bacillus subtilis: Comparison to Enteric Bacteria , 1999, Journal of bacteriology.

[4]  S. Rhee,et al.  Cascade control of Escherichia coli glutamine synthetase. Purification and properties of PII protein and nucleotide sequence of its structural gene. , 1987, The Journal of biological chemistry.

[5]  A. Burkovski,et al.  Nitrogen assimilation in Corynebacterium diphtheriae: pathways and regulatory cascades. , 2002, FEMS microbiology letters.

[6]  A. Ninfa,et al.  Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. , 1998, Biochemistry.

[7]  V. Weiss,et al.  Heterotrimerization of PII‐like signalling proteins: implications for PII‐mediated signal transduction systems , 1999, Molecular microbiology.

[8]  A. D. de Graaf,et al.  In Vivo Fluxes in the Ammonium-Assimilatory Pathways in Corynebacterium glutamicum Studied by15N Nuclear Magnetic Resonance , 1999, Applied and Environmental Microbiology.

[9]  A. Burkovski,et al.  Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. , 2001, Microbiology.

[10]  M. Hecker,et al.  The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. , 1999, Journal of molecular microbiology and biotechnology.

[11]  S. Kustu,et al.  Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  W. Vanheeswijk An additional PII in Escherichia coli: a new regulatory protein in the glutamine synthetase cascade , 1995 .

[13]  A. Ninfa,et al.  The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. , 1998, Biochemistry.

[14]  R. Edwards,et al.  Nitrogen control in bacteria. , 1995, Microbiological reviews.

[15]  C. Lambert,et al.  Uptake of glutamate in Corynebacterium glutamicum. 2. Evidence for a primary active transport system. , 1990, European journal of biochemistry.

[16]  S. Udaka,et al.  Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. , 2004, The Journal of general and applied microbiology.

[17]  L. Wray,et al.  Role of TnrA in Nitrogen Source-Dependent Repression of Bacillus subtilis Glutamate Synthase Gene Expression , 2000, Journal of bacteriology.

[18]  R. Krämer,et al.  AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum , 2000, Molecular microbiology.

[19]  A. Ninfa,et al.  Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. , 1998, Biochemistry.

[20]  A. D. de Graaf,et al.  Ammonia assimilation in Corynebacterium glutamicum and a glutamate dehydrogenase-deficient mutant , 1998, Biotechnology Letters.

[21]  M. Merrick,et al.  PII Signal Transduction Proteins, Pivotal Players in Microbial Nitrogen Control , 2001, Microbiology and Molecular Biology Reviews.

[22]  S. Kustu,et al.  Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Daniel Kahn,et al.  An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli , 1996, Molecular microbiology.

[24]  T. Goss,et al.  Roles of Glutamate Synthase, gltBD, and gltF in Nitrogen Metabolism of Escherichia coli and Klebsiella aerogenes , 2001, Journal of bacteriology.

[25]  B. Magasanik,et al.  Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli , 1985, Journal of bacteriology.

[26]  A. Ninfa,et al.  PII signal transduction proteins. , 2000, Trends in microbiology.

[27]  S. Udaka,et al.  STUDIES ON THE AMINO ACID FERMENTATION , 1957 .

[28]  R. Helling,et al.  Why does Escherichia coli have two primary pathways for synthesis of glutamate? , 1994, Journal of bacteriology.

[29]  R. Schmitz Internal Glutamine and Glutamate Pools in Klebsiella pneumoniae Grown Under Different Conditions of Nitrogen Availability , 2000, Current Microbiology.

[30]  Alexander J. Ninfa,et al.  Context-Dependent Functions of the PII and GlnK Signal Transduction Proteins in Escherichia coli , 2002, Journal of bacteriology.

[31]  H. Sahm,et al.  Isolation of the Corynebacterium glutamicum glnA gene encoding glutamine synthetase I. , 1997, FEMS microbiology letters.

[32]  H. Collett,et al.  Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in Corynebacterium glutamicum ATCC 13032. , 2001, FEMS microbiology letters.

[33]  H. Sung,et al.  Occurrence of glutamate synthase in Brevibacterium flavum , 1984 .

[34]  S. Fisher,et al.  Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence! , 1999, Molecular microbiology.

[35]  B. Eikmanns,et al.  Functional and Genetic Characterization of the (Methyl)ammonium Uptake Carrier of Corynebacterium glutamicum(*) , 1996, The Journal of Biological Chemistry.

[36]  A. Burkovski,et al.  Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD † , 2001, Molecular microbiology.

[37]  H. Sahm,et al.  Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase , 1992, Molecular microbiology.

[38]  H. Westerhoff,et al.  The Escherichia coli signal transducers PII (GlnB) and GlnK form heterotrimers in vivo: fine tuning the nitrogen signal cascade. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Burkovski,et al.  Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. , 2001, Microbiology.

[40]  S. Kustu,et al.  Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. , 1996, Journal of molecular biology.

[41]  A. Burkovski,et al.  Glutamine synthetases of Corynebacterium glutamicum: transcriptional control and regulation of activity. , 2001, FEMS microbiology letters.

[42]  Mike Merrick,et al.  Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB , 2002, The EMBO journal.