Computing Coordinated Motion Plans for Robot Swarms: The CG: SHOP Challenge 2021

We give an overview of the 2021 Computational Geometry Challenge, which targeted the problem of optimally coordinating a set of robots by computing a family of collision-free trajectories for a set S of n pixel-shaped objects from a given start configuration to a desired target configuration. 2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of computation → Design and analysis of algorithms

[1]  Vijay Kumar,et al.  A Survey on Aerial Swarm Robotics , 2018, IEEE Transactions on Robotics.

[2]  S. P. Fekete,et al.  Coordinated Motion Planning : The Video , 2018 .

[3]  Julien Bourgeois,et al.  A distributed self-reconfiguration algorithm for cylindrical lattice-based modular robots , 2016, 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA).

[4]  Paul Liu,et al.  Coordinated Motion Planning Through Randomized k-Opt , 2021, ArXiv.

[5]  Christian Scheideler,et al.  An Algorithmic Framework for Shape Formation Problems in Self-Organizing Particle Systems , 2015, NANOCOM.

[6]  Pascal Lafourcade,et al.  Shadoks Approach to Low-Makespan Coordinated Motion Planning , 2021, SoCG.

[7]  A Simulated Annealing Approach to Coordinated Motion Planning , 2021 .

[8]  Alan F. T. Winfield,et al.  Special issue on swarm robotics , 2008, Swarm Intelligence.

[9]  John E. Hopcroft,et al.  Reducing Multiple Object Motion Planning to Graph Searching , 1984, SIAM J. Comput..

[10]  Christian Scheideler,et al.  Universal Shape Formation for Programmable Matter , 2016, SPAA.

[11]  Julien Bourgeois,et al.  Distributed Self-Reconfiguration using a Deterministic Autonomous Scaffolding Structure , 2019, AAMAS.

[12]  Vijay Kumar,et al.  Trajectory Planning and Assignment in Multirobot Systems , 2012, WAFR.

[13]  Mark de Berg,et al.  Efficient Multi-Robot Motion Planning for Unlabeled Discs in Simple Polygons , 2013, IEEE Transactions on Automation Science and Engineering.

[14]  Dan Halperin,et al.  Motion Planning for Unlabeled Discs with Optimality Guarantees , 2015, Robotics: Science and Systems.

[15]  Radhika Nagpal,et al.  Programmable self-assembly in a thousand-robot swarm , 2014, Science.

[16]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[17]  Seth Copen Goldstein,et al.  Claytronics: A Scalable Basis For Future Robots , 2004 .

[18]  Michael Schreckenberg,et al.  Human Behaviour and Traffic Networks , 2004 .

[19]  Dan Halperin,et al.  k-color multi-robot motion planning , 2012, Int. J. Robotics Res..

[20]  Erik D. Demaine,et al.  Coordinated Motion Planning: Reconfiguring a Swarm of Labeled Robots with Bounded Stretch , 2018, SoCG.

[21]  J. Schwartz,et al.  On the Piano Movers' Problem: III. Coordinating the Motion of Several Independent Bodies: The Special Case of Circular Bodies Moving Amidst Polygonal Barriers , 1983 .

[22]  Dan Halperin,et al.  On the hardness of unlabeled multi-robot motion planning , 2014, Int. J. Robotics Res..

[23]  Daniel Delahaye,et al.  (EN-023) Mathematical Models for Aircraft Trajectory Design : A Survey. , 2013 .

[24]  Sándor P. Fekete,et al.  Methods for Improving the Flow of Traffic , 2011, Organic Computing.

[25]  Vijay Kumar,et al.  Goal assignment and trajectory planning for large teams of interchangeable robots , 2014, Auton. Robots.