Unified Analysis of Finite Element Methods for Problems with Moving Boundaries

We present a unified analysis of finite element methods for problems with prescribed moving boundaries. In particular, we study an abstract parabolic problem posed on a moving domain with prescribed evolution, discretized in space with a finite element space that is associated with a moving mesh that conforms to the domain at all times. The moving mesh is assumed to evolve smoothly in time, except perhaps at a finite number of remeshing times where the solution is transferred between finite element spaces via a projection. A key result of our analysis is an abstract estimate for the $L^2$-norm of the error between the exact and semidiscrete solutions at a fixed positive time, expressed in terms of the total variation in time of a quantity that measures the difference between the exact solution at time $t$ and its elliptic projection onto the finite element space at time $t$. Specializing the abstract estimate to particular choices of the mesh motion strategy, finite element space, and projector leads to e...

[1]  Evan S. Gawlik,et al.  Supercloseness of Orthogonal Projections onto Nearby Finite Element Spaces , 2014, 1408.4104.

[2]  Patrick M. Knupp,et al.  Winslow Smoothing on Two-Dimensional Unstructured Meshes , 1999, Engineering with Computers.

[3]  Krishnan Suresh,et al.  Finite element analysis over tangled simplicial meshes: Theory and implementation , 2013 .

[4]  Jaime Peraire,et al.  Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable Domains , 2007 .

[5]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[6]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[7]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[10]  Mikhail J. Shashkov,et al.  Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods , 2014, J. Comput. Phys..

[11]  Ricardo H. Nochetto,et al.  Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..

[12]  Charbel Farhat,et al.  On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .

[13]  Adrian J. Lew,et al.  High-order finite element methods for moving boundary problems with prescribed boundary evolution , 2014, 1405.2107.

[14]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[15]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[16]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[17]  Evan S. Gawlik,et al.  High‐order methods for low Reynolds number flows around moving obstacles based on universal meshes , 2015 .

[18]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[19]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[20]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[21]  Ramsharan Rangarajan,et al.  Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes , 2014 .

[22]  W. Ziemer Weakly differentiable functions , 1989 .

[23]  T. Dupont Mesh modification for evolution equations , 1982 .

[24]  Christoph Schwab,et al.  Finite Element Methods for Parabolic Problems , 2013 .

[25]  Stefan Menzel,et al.  High Quality Mesh Morphing Using Triharmonic Radial Basis Functions , 2012, IMR.

[26]  Dimitri J. Mavriplis,et al.  On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes , 2008, Journal of Computational Physics.

[27]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[28]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[29]  Ricardo H. Nochetto,et al.  Time-discrete higher order ALE formulations: a priori error analysis , 2013, Numerische Mathematik.

[30]  Daniele Boffi,et al.  Stability and geometric conservation laws for ALE formulations , 2004 .

[31]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[32]  H. Amann,et al.  Ordinary Differential Equations: An Introduction to Nonlinear Analysis , 1990 .

[33]  W. Ziemer Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .

[34]  Patrick M. Knupp,et al.  Updating meshes on deforming domains : An application of the target-matrix paradigm , 2007 .

[35]  C. M. Elliott,et al.  Error analysis for an ALE evolving surface finite element method , 2014, 1403.1402.

[36]  H. Piaggio Mathematical Analysis , 1955, Nature.

[37]  Lucia Gastaldi,et al.  A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..

[38]  Suzanne M. Shontz,et al.  Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes , 2004, cs/0410045.

[39]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .