Unified Analysis of Finite Element Methods for Problems with Moving Boundaries
暂无分享,去创建一个
[1] Evan S. Gawlik,et al. Supercloseness of Orthogonal Projections onto Nearby Finite Element Spaces , 2014, 1408.4104.
[2] Patrick M. Knupp,et al. Winslow Smoothing on Two-Dimensional Unstructured Meshes , 1999, Engineering with Computers.
[3] Krishnan Suresh,et al. Finite element analysis over tangled simplicial meshes: Theory and implementation , 2013 .
[4] Jaime Peraire,et al. Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable Domains , 2007 .
[5] Tayfun E. Tezduyar,et al. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .
[6] Thomas J. R. Hughes,et al. Encyclopedia of computational mechanics , 2004 .
[7] C. Farhat,et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .
[8] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[9] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[10] Mikhail J. Shashkov,et al. Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods , 2014, J. Comput. Phys..
[11] Ricardo H. Nochetto,et al. Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..
[12] Charbel Farhat,et al. On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .
[13] Adrian J. Lew,et al. High-order finite element methods for moving boundary problems with prescribed boundary evolution , 2014, 1405.2107.
[14] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[15] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[16] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[17] Evan S. Gawlik,et al. High‐order methods for low Reynolds number flows around moving obstacles based on universal meshes , 2015 .
[18] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[19] L. Formaggia,et al. Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .
[20] Charbel Farhat,et al. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .
[21] Ramsharan Rangarajan,et al. Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes , 2014 .
[22] W. Ziemer. Weakly differentiable functions , 1989 .
[23] T. Dupont. Mesh modification for evolution equations , 1982 .
[24] Christoph Schwab,et al. Finite Element Methods for Parabolic Problems , 2013 .
[25] Stefan Menzel,et al. High Quality Mesh Morphing Using Triharmonic Radial Basis Functions , 2012, IMR.
[26] Dimitri J. Mavriplis,et al. On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes , 2008, Journal of Computational Physics.
[27] J. Rodrigues. Obstacle Problems in Mathematical Physics , 1987 .
[28] Fabio Nobile,et al. A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .
[29] Ricardo H. Nochetto,et al. Time-discrete higher order ALE formulations: a priori error analysis , 2013, Numerische Mathematik.
[30] Daniele Boffi,et al. Stability and geometric conservation laws for ALE formulations , 2004 .
[31] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[32] H. Amann,et al. Ordinary Differential Equations: An Introduction to Nonlinear Analysis , 1990 .
[33] W. Ziemer. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .
[34] Patrick M. Knupp,et al. Updating meshes on deforming domains : An application of the target-matrix paradigm , 2007 .
[35] C. M. Elliott,et al. Error analysis for an ALE evolving surface finite element method , 2014, 1403.1402.
[36] H. Piaggio. Mathematical Analysis , 1955, Nature.
[37] Lucia Gastaldi,et al. A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..
[38] Suzanne M. Shontz,et al. Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes , 2004, cs/0410045.
[39] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .