Exact algorithms for the Hamiltonian cycle problem in planar graphs
暂无分享,去创建一个
[1] Gary L. Miller,et al. Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..
[2] Erik D. Demaine,et al. Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth , 2004, GD.
[3] Warren D. Smith. Studies in computational geometry motivated by mesh generation , 1989 .
[4] Robert E. Tarjan,et al. Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[5] Russell Impagliazzo,et al. On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..
[6] David S. Johnson,et al. The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..
[7] Arnon Rosenthal. Dynamic Programming is Optimal for Nonserial Optimization Problems , 1982, SIAM J. Comput..
[8] Richard C. T. Lee,et al. The searching over separators strategy to solve some NP-hard problems in subexponential time , 1993, Algorithmica.
[9] Eric T. Bax,et al. Inclusion and Exclusion Algorithm for the Hamiltonian Path Problem , 1993, Inf. Process. Lett..
[10] Christos H. Papadimitriou,et al. The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..
[11] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[12] Gerhard J. Woeginger,et al. Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.
[13] Richard M. Karp,et al. Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..
[14] Philip N. Klein,et al. A polynomial-time approximation scheme for weighted planar graph TSP , 1998, SODA '98.
[15] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[16] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[17] Rolf Niedermeier,et al. Ubiquitous Parameterization - Invitation to Fixed-Parameter Algorithms , 2004, MFCS.
[18] Michael R. Fellows,et al. Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems , 2003, CATS.
[19] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[20] Liming Cai,et al. On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..
[21] Jayme Luiz Szwarcfiter,et al. Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..