Exact algorithms for the Hamiltonian cycle problem in planar graphs

We construct an exact algorithm for the Hamiltonian cycle problem in planar graphs with worst case time complexity O(c^n), where c is some fixed constant that does not depend on the instance. Furthermore, we show that under the exponential time hypothesis, the time complexity cannot be improved to O(c^o^(^n^)).

[1]  Gary L. Miller,et al.  Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..

[2]  Erik D. Demaine,et al.  Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth , 2004, GD.

[3]  Warren D. Smith Studies in computational geometry motivated by mesh generation , 1989 .

[4]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[5]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[6]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[7]  Arnon Rosenthal Dynamic Programming is Optimal for Nonserial Optimization Problems , 1982, SIAM J. Comput..

[8]  Richard C. T. Lee,et al.  The searching over separators strategy to solve some NP-hard problems in subexponential time , 1993, Algorithmica.

[9]  Eric T. Bax,et al.  Inclusion and Exclusion Algorithm for the Hamiltonian Path Problem , 1993, Inf. Process. Lett..

[10]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[13]  Richard M. Karp,et al.  Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..

[14]  Philip N. Klein,et al.  A polynomial-time approximation scheme for weighted planar graph TSP , 1998, SODA '98.

[15]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[16]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[17]  Rolf Niedermeier,et al.  Ubiquitous Parameterization - Invitation to Fixed-Parameter Algorithms , 2004, MFCS.

[18]  Michael R. Fellows,et al.  Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems , 2003, CATS.

[19]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[20]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[21]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..