Tracing surface intersections with validated ODE system solver

This paper presents a robust method for tracing intersection curve segments between continuous rational parametric surfaces, typically rational polynomial parametric surface patches. The tracing procedure is based on a validated ordinary differential equation (ODE) system solver which can be applied, without substantial overhead, for transversal as well as tangential intersections. Application of the validated ODE solver in the context of eliminating the phenomenon of straying and looping is discussed. In addition, we develop a method to fulfill the condition of a continuous gap-free boundary with a definite numerically verified upper bound for the intersection curve error in parameter space and is further mapped to an upper bound for the intersection curve error in 3D model space, which assists in defining well-formed boundary representation models of complex 3D solids.

[1]  N. F. Stewart A heuristic to reduce the wrapping effect in the numerical solution ofx′=f(t,x) , 1971 .

[2]  Eldon Hansen,et al.  Topics in Interval Analysis , 1969 .

[3]  Michael I. Jordan,et al.  Surface/surface intersection , 1987, Comput. Aided Geom. Des..

[4]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[5]  Kaj Madsen,et al.  Automatic Validation of Numerical Solutions , 1997 .

[6]  William H. Press,et al.  Numerical recipes in C , 2002 .

[7]  Thomas A. Grandine,et al.  A new approach to the surface intersection problem , 1997, Comput. Aided Geom. Des..

[8]  George F. Corliss Industrial Applications of Interval Techniques , 1990, Computer Arithmetic and Self-Validating Numerical Methods.

[9]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[10]  T. Sakkalis The topological configuration of a real algebraic curve , 1991, Bulletin of the Australian Mathematical Society.

[11]  Christian P. Ullrich,et al.  Computer Arithmetic and Self-Validating Numerical Methods , 1990, Notes and reports in mathematics in science and engineering.

[12]  P. Hartman Ordinary Differential Equations , 1965 .

[13]  Xiuzi Ye,et al.  Differential geometry of intersection curves of two surfaces , 1999, Comput. Aided Geom. Des..

[14]  Nicholas M. Patrikalakis,et al.  Efficient and reliable methods for rounded-interval arithmetic , 1998, Comput. Aided Des..

[15]  Nicholas M. Patrikalakis,et al.  Topological and Geometric Properties of Interval Solid Models , 2001, Graph. Model..

[16]  Xiuzi Ye,et al.  Robust interval algorithm for surface intersections , 1997, Comput. Aided Des..

[17]  Nedialko S. Nedialkov,et al.  Some recent advances in validated methods for IVPs for ODEs , 2002 .

[18]  Ulrich W. Kulisch,et al.  Perspectives on Enclosure Methods , 2001 .

[19]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[20]  Nicholas M. Patrikalakis,et al.  Intersection Problems , 2002, Handbook of Computer Aided Geometric Design.

[21]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[22]  Murray R. Spiegel,et al.  Schaum's Outline of Theory and Problems of Advanced Mathematics for Engineers and Scientists , 1980 .

[23]  Nicholas M. Patrikalakis,et al.  Robust interval solid modelling Part I: representations , 1996, Comput. Aided Des..

[24]  Nedialko S. Nedialkov,et al.  An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1999, Reliab. Comput..

[25]  Nicholas M. Patrikalakis,et al.  Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.

[26]  Nicholas M. Patrikalakis,et al.  Robust interval algorithm for curve intersections , 1996, Comput. Aided Des..

[27]  J. Davenport Editor , 1960 .

[28]  P. Eijgenraam The Solution of Initial Value Problems Using Interval Arithmetic , 1981 .

[29]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[30]  Nicholas M. Patrikalakis,et al.  Surface-to-surface intersections , 1993, IEEE Computer Graphics and Applications.

[31]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[32]  K. A. Stroud,et al.  Engineering Mathematics , 2020, Nature.

[33]  Nicholas M. Patrikalakis,et al.  Approximation of measured data with interval B-splines , 1997, Comput. Aided Des..

[34]  Christoph M. Hoffmann,et al.  Robustness in Geometric Computations , 2001, J. Comput. Inf. Sci. Eng..