Tracing surface intersections with validated ODE system solver
暂无分享,去创建一个
H. Mukundan | K. H. Ko | T. Maekawa | T. Sakkalis | N. M. Patrikalakis | T. Sakkalis | N. Patrikalakis | T. Maekawa | K. Ko | H. Mukundan | Takis Sakkalis | Nicholas M. Patrikalakis
[1] N. F. Stewart. A heuristic to reduce the wrapping effect in the numerical solution ofx′=f(t,x) , 1971 .
[2] Eldon Hansen,et al. Topics in Interval Analysis , 1969 .
[3] Michael I. Jordan,et al. Surface/surface intersection , 1987, Comput. Aided Geom. Des..
[4] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[5] Kaj Madsen,et al. Automatic Validation of Numerical Solutions , 1997 .
[6] William H. Press,et al. Numerical recipes in C , 2002 .
[7] Thomas A. Grandine,et al. A new approach to the surface intersection problem , 1997, Comput. Aided Geom. Des..
[8] George F. Corliss. Industrial Applications of Interval Techniques , 1990, Computer Arithmetic and Self-Validating Numerical Methods.
[9] N. Nedialkov,et al. Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .
[10] T. Sakkalis. The topological configuration of a real algebraic curve , 1991, Bulletin of the Australian Mathematical Society.
[11] Christian P. Ullrich,et al. Computer Arithmetic and Self-Validating Numerical Methods , 1990, Notes and reports in mathematics in science and engineering.
[12] P. Hartman. Ordinary Differential Equations , 1965 .
[13] Xiuzi Ye,et al. Differential geometry of intersection curves of two surfaces , 1999, Comput. Aided Geom. Des..
[14] Nicholas M. Patrikalakis,et al. Efficient and reliable methods for rounded-interval arithmetic , 1998, Comput. Aided Des..
[15] Nicholas M. Patrikalakis,et al. Topological and Geometric Properties of Interval Solid Models , 2001, Graph. Model..
[16] Xiuzi Ye,et al. Robust interval algorithm for surface intersections , 1997, Comput. Aided Des..
[17] Nedialko S. Nedialkov,et al. Some recent advances in validated methods for IVPs for ODEs , 2002 .
[18] Ulrich W. Kulisch,et al. Perspectives on Enclosure Methods , 2001 .
[19] Nedialko S. Nedialkov,et al. Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..
[20] Nicholas M. Patrikalakis,et al. Intersection Problems , 2002, Handbook of Computer Aided Geometric Design.
[21] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[22] Murray R. Spiegel,et al. Schaum's Outline of Theory and Problems of Advanced Mathematics for Engineers and Scientists , 1980 .
[23] Nicholas M. Patrikalakis,et al. Robust interval solid modelling Part I: representations , 1996, Comput. Aided Des..
[24] Nedialko S. Nedialkov,et al. An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation , 1999, Reliab. Comput..
[25] Nicholas M. Patrikalakis,et al. Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.
[26] Nicholas M. Patrikalakis,et al. Robust interval algorithm for curve intersections , 1996, Comput. Aided Des..
[27] J. Davenport. Editor , 1960 .
[28] P. Eijgenraam. The Solution of Initial Value Problems Using Interval Arithmetic , 1981 .
[29] Nicholas M. Patrikalakis,et al. Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..
[30] Nicholas M. Patrikalakis,et al. Surface-to-surface intersections , 1993, IEEE Computer Graphics and Applications.
[31] Rida T. Farouki,et al. On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..
[32] K. A. Stroud,et al. Engineering Mathematics , 2020, Nature.
[33] Nicholas M. Patrikalakis,et al. Approximation of measured data with interval B-splines , 1997, Comput. Aided Des..
[34] Christoph M. Hoffmann,et al. Robustness in Geometric Computations , 2001, J. Comput. Inf. Sci. Eng..