Ultrafine cellulose nanocrystal-reinforced MXene biomimetic composites for multifunctional electromagnetic interference shielding

[1]  Jiurong Liu,et al.  Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding. , 2022, ACS nano.

[2]  Jiaxin Pan,et al.  Lotus leaf-inspired and multifunctional Janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating , 2022, Composites Part B: Engineering.

[3]  X. Guan,et al.  2D MXene Nanomaterials: Synthesis, Mechanism, and Multifunctional Applications in Microwave Absorption , 2022, Small Structures.

[4]  Jiurong Liu,et al.  ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption , 2022, Chemical Engineering Journal.

[5]  Yue Zhao,et al.  Multi-spectrum bands compatibility: New trends in stealth materials research , 2022, Science China Materials.

[6]  Junwei Gu,et al.  New generation electromagnetic materials: harvesting instead of dissipation solo. , 2022, Science bulletin.

[7]  Junwei Gu,et al.  Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management , 2022, Nano Research.

[8]  Junwei Gu,et al.  A Perspective for Developing Polymer-Based Electromagnetic Interference Shielding Composites , 2022, Nano-Micro Letters.

[9]  Shanyu Zhao,et al.  Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding , 2022, Nano-Micro Letters.

[10]  Wei Liu,et al.  Metal sulfides based composites as promising efficient microwave absorption materials: A review , 2022, Journal of Materials Science & Technology.

[11]  Junwei Gu,et al.  Flexible Sandwich-Structured Electromagnetic Interference Shielding Nanocomposite Films with Excellent Thermal Conductivities. , 2021, Small.

[12]  Canhui Lu,et al.  Facile Fabrication of Densely Packed Ti3C2 MXene/Nanocellulose Composite Films for Enhancing Electromagnetic Interference Shielding and Electro-/Photothermal Performance. , 2021, ACS nano.

[13]  A. Poulin,et al.  Fully 3D Printed and Disposable Paper Supercapacitors , 2021, Advanced materials.

[14]  E. Hack,et al.  Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and Conductive Nanomaterials. , 2021, ACS nano.

[15]  Qiuyu Zhang,et al.  Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management , 2021 .

[16]  D. Cao,et al.  MXenes for polymer matrix electromagnetic interference shielding composites: A review , 2021 .

[17]  M. Carey,et al.  MXene polymer nanocomposites: a review , 2021 .

[18]  J. Dai,et al.  Developing fibrillated cellulose as a sustainable technological material , 2021, Nature.

[19]  Zhimin Xie,et al.  Lightweight MXene/Cellulose Nanofiber Composite Film for Electromagnetic Interference Shielding , 2021, Journal of Electronic Materials.

[20]  R. Vaia,et al.  Toward Architected Nanocomposites: MXenes and Beyond. , 2020, ACS nano.

[21]  R. Sun,et al.  Electromagnetic interference shielding of Ti3C2T MXene modified by ionic liquid for high chemical stability and excellent mechanical strength , 2020, Chemical Engineering Journal.

[22]  Y. Pei,et al.  Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance , 2020 .

[23]  Jun Pyo Hong,et al.  Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene) , 2020, Science.

[24]  Xingyi Huang,et al.  A high performance wearable strain sensor with advanced thermal management for motion monitoring , 2020, Nature Communications.

[25]  C. Zhang,et al.  Nanocellulose‐MXene Biomimetic Aerogels with Orientation‐Tunable Electromagnetic Interference Shielding Performance , 2020, Advanced science.

[26]  S. Fang,et al.  Super-tough MXene-functionalized graphene sheets , 2020, Nature Communications.

[27]  Xungai Wang,et al.  Scalable Manufacturing of Free‐Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity , 2020, Advanced materials.

[28]  Kevin J. De France,et al.  Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottom‐Up Fabrication , 2020, Advanced materials.

[29]  Y. Gogotsi,et al.  Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. , 2020, ACS nano.

[30]  Hui‐Ming Cheng,et al.  Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film , 2020, Advanced materials.

[31]  S. Luo,et al.  2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation , 2020 .

[32]  Gang San Lee,et al.  Electromagnetic Shielding of Monolayer MXene Assemblies , 2020, Advanced materials.

[33]  A. Neels,et al.  Complex‐Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds , 2019, Advanced Functional Materials.

[34]  L. Qu,et al.  Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength , 2019, Advanced Functional Materials.

[35]  Pengbo Wan,et al.  Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding , 2019, Nano-micro letters.

[36]  Yali Zhang,et al.  Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application , 2019, Composites Part B: Engineering.

[37]  Majid Beidaghi,et al.  Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose , 2019, Advanced materials.

[38]  Micah J. Green,et al.  Antioxidants Unlock Shelf-Stable Ti3C2T (MXene) Nanosheet Dispersions , 2019, Matter.

[39]  L. Wang,et al.  3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties , 2019, Composites Part A: Applied Science and Manufacturing.

[40]  Canhui Lu,et al.  Ultrathin MXene/Calcium Alginate Aerogel Film for High‐Performance Electromagnetic Interference Shielding , 2019, Advanced Materials Interfaces.

[41]  Lai-fei Cheng,et al.  Lightweight Ti2CT x MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. , 2019, ACS applied materials & interfaces.

[42]  X. Feng,et al.  Ultrathin Biomimetic Polymeric Ti3C2T x MXene Composite Films for Electromagnetic Interference Shielding. , 2018, ACS applied materials & interfaces.

[43]  Zhong-Zhen Yu,et al.  Highly Electrically Conductive Three-Dimensional Ti3C2T x MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. , 2018, ACS nano.

[44]  R. Libanori,et al.  Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. , 2018, ACS nano.

[45]  Mingguo Ma,et al.  Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. , 2018, ACS nano.

[46]  Hao‐Bin Zhang,et al.  Hydrophobic, Flexible, and Lightweight MXene Foams for High‐Performance Electromagnetic‐Interference Shielding , 2017, Advanced materials.

[47]  Lai-fei Cheng,et al.  Carbon Nanotube–Multilayered Graphene Edge Plane Core–Shell Hybrid Foams for Ultrahigh‐Performance Electromagnetic‐Interference Shielding , 2017, Advanced materials.

[48]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[49]  Licheng Zhou,et al.  Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding , 2016 .

[50]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[51]  Jang-Kyo Kim,et al.  Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High‐Performance Electromagnetic Interference Shielding , 2014, Advanced materials.

[52]  Uttandaraman Sundararaj,et al.  EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study , 2013 .

[53]  Yu-Sheng Wang,et al.  Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite , 2013 .

[54]  I. Huynen,et al.  Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials , 2013 .

[55]  Hui-Ming Cheng,et al.  Lightweight and Flexible Graphene Foam Composites for High‐Performance Electromagnetic Interference Shielding , 2013, Advanced materials.

[56]  Thomas Apperley,et al.  Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites , 2012 .

[57]  Uttandaraman Sundararaj,et al.  Electromagnetic interference shielding mechanisms of CNT/polymer composites , 2009 .

[58]  Xiao Lin,et al.  Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. , 2006, Nano letters.

[59]  J. Loos,et al.  Preparation of Conductive Nanotube–Polymer Composites Using Latex Technology , 2004 .

[60]  D. Chung,et al.  Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness , 1997 .