Magnetic electron collimation in three-dimensional semi-metals

[1]  L. Pi,et al.  Current jetting distorted planar Hall effect in a Weyl semimetal with ultrahigh mobility , 2018, Physical Review Materials.

[2]  R. Cava,et al.  Experimental Tests of the Chiral Anomaly Magnetoresistance in the Dirac-Weyl Semimetals Na3Bi and GdPtBi , 2018, Physical Review X.

[3]  R. Westervelt,et al.  Imaging electron flow from collimating contacts in graphene , 2017, 1710.10186.

[4]  Ju-Hyun Park,et al.  Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2 , 2016, Nature Communications.

[5]  Kenji Watanabe,et al.  Absorptive pinhole collimators for ballistic Dirac fermions in graphene , 2016, Nature Communications.

[6]  Shaowen Chen,et al.  Electron optics with p-n junctions in ballistic graphene , 2016, Science.

[7]  F. Arnold,et al.  On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance , 2016, 1606.03389.

[8]  Su-Yang Xu,et al.  Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal , 2016, Nature Communications.

[9]  A. Vishwanath,et al.  Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2 , 2015, Nature.

[10]  G. Gu,et al.  Chiral magnetic effect in ZrTe5 , 2014, Nature Physics.

[11]  E. Berg,et al.  Current at a distance and resonant transparency in Weyl semimetals , 2015, 1508.03047.

[12]  Z. Liao,et al.  Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires , 2015, Nature Communications.

[13]  C. Felser,et al.  Linear magnetoresistance caused by mobility fluctuations in n-doped Cd(3)As(2). , 2014, Physical review letters.

[14]  Yanfei Zhao,et al.  Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal Cd 3 As 2 , 2014, 1412.0330.

[15]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[16]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[17]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[18]  Mark S. Lundstrom,et al.  Gate-controlled guiding of electrons in graphene. , 2010, Nature nanotechnology.

[19]  R. R. Hartmann,et al.  Smooth electron waveguides in graphene , 2009, 0908.0561.

[20]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[21]  J. Heil,et al.  Imaging of Longitudinal Electron Focusing by Light-Induced Carrier Excitation , 1997 .

[22]  H. V. Houten,et al.  Principles of Solid State Electron Optics , 1995 .

[23]  H. V. Houten,et al.  Quantum Transport in Semiconductor Nanostructures , 2004, cond-mat/0412664.

[24]  K. West,et al.  Refractive switch for two‐dimensional electrons , 1990 .

[25]  Heiblum,et al.  Electrostatic electron lens in the ballistic regime. , 1990, Physical review. B, Condensed matter.

[26]  K. West,et al.  Electron focusing in two‐dimensional systems by means of an electrostatic lens , 1990 .

[27]  Harris,et al.  Coherent electron focusing with quantum point contacts in a two-dimensional electron gas. , 1989, Physical review. B, Condensed matter.

[28]  A. Pippard Magnetoresistance in metals , 1989 .

[29]  K. Yoshida Transport of spatially inhomogeneous current in a compensated metal under magnetic fields. II. Dynamical properties of the current system , 1979 .

[30]  K. Yoshida Transport of spatially inhomogeneous current in a compensated metal under magnetic fields. I. Potential and current distributions , 1979 .

[31]  K. Yoshida A Geometrical Transport Model for Inhomogeneous Current Distribution in Semimetals under High Magnetic Fields , 1976 .

[32]  K. Yoshida Anomalous Electric Fields in Semimetals under High Magnetic Fields , 1975 .

[33]  G. Saunders,et al.  Galvanomagnetic properties of single-crystal antimony between 77 °K and 273 °K , 1967 .

[34]  D. Shoenberg The magnetic properties of bismuth, III. Further measurements on the de Haas-van Alphen effect , 1939 .