On the function of Erdős and Rogers

In 1930, Frank Ramsey published a seminal paper “On a problem of formal logic”[13] beginning a new area of research known today as Ramsey theory (for a comprehensive introduction to Ramsey theory see, e.g.,[9]).

[1]  J. Spencer Ramsey Theory , 1990 .

[2]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[3]  Benny Sudakov Large K r -free subgraphs in K s -free graphs and some other Ramsey-type problems , 2005 .

[4]  Michael Krivelevich,et al.  Bounding Ramsey Numbers through Large Deviation Inequalities , 1995, Random Struct. Algorithms.

[5]  Benny Sudakov,et al.  Large Kr‐free subgraphs in Ks‐free graphs and some other Ramsey‐type problems , 2005, Random Struct. Algorithms.

[6]  Paul Erdös,et al.  The Construction of Certain Graphs , 1966, Canadian Journal of Mathematics.

[7]  Noga Alon,et al.  Constructive Bounds for a Ramsey-Type Problem , 1997, Graphs Comb..

[8]  Joseph A. Thas,et al.  Chapter 9 – Generalized Polygons , 1995 .

[9]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[10]  Benny Sudakov,et al.  A New Lower Bound For A Ramsey-Type Problem , 2005, Comb..

[11]  Béla Bollobás,et al.  Graphs without large triangle free subgraphs , 1991, Discret. Math..

[12]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[13]  Andrzej Dudek,et al.  An almost quadratic bound on vertex Folkman numbers , 2010, J. Comb. Theory, Ser. B.

[14]  Michael Krivelevich,et al.  Ks-Free Graphs Without Large Kr-Free Subgraphs , 1994, Combinatorics, Probability and Computing.

[15]  Andrzej Dudek,et al.  On Ks-free subgraphs in Ks+k-free graphs and vertex Folkman numbers , 2011, Comb..