Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory

This paper presents a new inverse tangent shear deformation theory (ITSDT) for the static, free vibration and buckling analysis of laminated composite and sandwich plates. In the present theory, shear stresses are vanished at the top and bottom surfaces of the plates and shear correction factors are no longer required. A weak form of the static, free vibration and buckling models for laminated composite and sandwich plates based on ITSDT is then derived and is numerically solved using an isogeometric analysis (IGA). The proposed formulation requires C1-continuity generalized displacements and hence basis functions used in IGA fulfill this requirement. Numerical examples are provided to show high efficiency of the present method compared with other published solutions.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[3]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[4]  Erasmo Carrera,et al.  Evaluation of Layerwise Mixed Theories for Laminated Plates Analysis , 1998 .

[5]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[6]  S. Srinivas,et al.  A refined analysis of composite laminates , 1973 .

[7]  Aftab A. Mufti,et al.  Stability of sandwich plates by mixed, higher-order analytical formulation , 2003 .

[8]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[9]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[10]  C. Soares,et al.  A new higher order shear deformation theory for sandwich and composite laminated plates , 2012 .

[11]  Tarun Kant,et al.  Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory , 2001 .

[12]  J. N. Reddy,et al.  Analysis of composite plates using various plate theories -Part 1: Formulation and analytical solutions , 1998 .

[13]  António J.M. Ferreira,et al.  Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter , 2008 .

[14]  Chen Wanji,et al.  Free vibration of laminated composite and sandwich plates using global–local higher-order theory , 2006 .

[15]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[16]  Kostas P. Soldatos,et al.  A transverse shear deformation theory for homogeneous monoclinic plates , 1992 .

[17]  Silvia Bertoluzza,et al.  A high order collocation method for the static and vibration analysis of composite plates using a first-order theory , 2009 .

[18]  Guirong Liu,et al.  An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape , 2003 .

[19]  K. M. Liew,et al.  Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method , 2003 .

[20]  Sébastien Mistou,et al.  Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity , 2003 .

[21]  M. Shariyat A generalized high-order global–local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads , 2010 .

[22]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[23]  M. A. McCarthy,et al.  Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method , 2008 .

[24]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[25]  M. Di Sciuva,et al.  An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates , 1987 .

[26]  Hung Nguyen-Xuan,et al.  Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory , 2013 .

[27]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[28]  J. Reddy,et al.  Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory , 1985 .

[29]  C.M.C. Roque,et al.  Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method , 2003 .

[30]  M. M. Kheirikhah,et al.  Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory , 2012 .

[31]  E. Carrera C0 REISSNER–MINDLIN MULTILAYERED PLATE ELEMENTS INCLUDING ZIG-ZAG AND INTERLAMINAR STRESS CONTINUITY , 1996 .

[32]  S. A. Ambartsumian,et al.  On the theory of bending of anisotropic plates and shallow shells , 1960 .

[33]  Hidenori Murakami,et al.  A Composite Plate Theory for Arbitrary Laminate Configurations. , 1987 .

[34]  Hung Nguyen-Xuan,et al.  Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory , 2013 .

[35]  J. Carleone,et al.  Transverse shear in laminated plate theories. , 1973 .

[36]  Rakesh K. Kapania,et al.  Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates , 2012 .

[37]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[38]  Tarun Kant,et al.  Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories , 2001 .

[39]  Liviu Librescu,et al.  Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. II - Buckling and free vibration , 1988 .

[40]  M. Touratier,et al.  An efficient standard plate theory , 1991 .

[41]  T. Rabczuk,et al.  NURBS-based finite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter , 2012, 1210.4676.

[42]  Mo Shing Cheung,et al.  Finite Strip Analysis of Anisotropic Laminated Composite Plates Using Higher-Order Shear Deformation Theory" , 1994 .

[43]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[44]  M Discuiva AN IMPROVED SHEAR DEFORMATION THEORY FOR MODERATELY THICK MULTILAYERED ANISOTROPIC SHELLS AND PLATES , 1987 .

[45]  Ashraf M. Zenkour,et al.  Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories , 1999 .

[46]  Loc V. Tran,et al.  Isogeometric analysis of functionally graded plates using higher-order shear deformation theory , 2013 .

[47]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[48]  António J.M. Ferreira,et al.  A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates , 2003 .

[49]  E. Carrera Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells , 2001 .

[50]  S. T. Mau,et al.  A Refined Laminated Plate Theory , 1973 .

[51]  J. Ren,et al.  A new theory of laminated plate , 1986 .

[52]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[53]  Charles W. Bert,et al.  Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory , 1991 .

[54]  R. Batra,et al.  Finite deformations of curved laminated St. Venant-Kirchhoff beam using layer-wise third order shear and normal deformable beam theory (TSNDT) , 2013 .

[55]  Ahmed K. Noor,et al.  Three‐Dimensional Solutions for Initially Stressed Structural Sandwiches , 1994 .

[56]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[57]  Ahmed K. Noor,et al.  Shear-Flexible Finite-Element Models of Laminated Composite Plates and Shells. , 1975 .

[58]  Metin Aydogdu,et al.  A new shear deformation theory for laminated composite plates , 2009 .

[59]  Hiroyuki Matsunaga,et al.  Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory , 2000 .

[60]  Tarun Kant,et al.  Higher-order shear deformable theories for flexure of sandwich plates—Finite element evaluations , 1988 .

[61]  M. Karama,et al.  A new theory for laminated composite plates , 2009 .

[62]  Abdul Hamid Sheikh,et al.  Buckling of Laminated Composite Plates by a New Element Based on Higher Order Shear Deformation Theory , 2003 .

[63]  Chih‐Ping Wu,et al.  Vibration And Stability Of Laminated Plates Based On A Local High Order Plate Theory , 1994 .

[64]  Tarun Kant,et al.  Two shear deformable finite element models for buckling analysis of skew fibre-reinforced composite and sandwich panels , 1999 .

[65]  M. Cetkovic,et al.  Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model , 2009 .

[66]  António J.M. Ferreira,et al.  Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization , 2005 .

[67]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[68]  Silvia Bertoluzza,et al.  A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory , 2010 .

[69]  Dhanjoo N. Ghista,et al.  Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates , 2007 .

[70]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[71]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[72]  E. Reissner,et al.  On transverse bending of plates, including the effect of transverse shear deformation☆ , 1975 .

[73]  Hung Nguyen-Xuan,et al.  Isogeometric Analysis of Laminated Composite Plates Using the Higher-Order Shear Deformation Theory , 2015 .

[74]  Tarun Kant,et al.  Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory , 2002 .

[75]  Dipak K. Maiti,et al.  A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates , 2013 .

[76]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[77]  Hemendra Arya,et al.  A zigzag model for laminated composite beams , 2002 .

[78]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[79]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .