Role of sentiment analysis in social media security and analytics

[1]  Yi Hu,et al.  Document sentiment classification by exploring description model of topical terms , 2011, Comput. Speech Lang..

[2]  Xia Liu,et al.  A big data approach to examining social bots on Twitter , 2019, Journal of Services Marketing.

[3]  Davide Buscaldi,et al.  Sentiment Analysis on Microblogs for Natural Disasters Management: a Study on the 2014 Genoa Floodings , 2015, WWW.

[4]  Ting Yu,et al.  Detecting Opinion Spammer Groups Through Community Discovery and Sentiment Analysis , 2015, DBSec.

[5]  Vincenzo Loia,et al.  A fuzzy-oriented sentic analysis to capture the human emotion in Web-based content , 2014, Knowl. Based Syst..

[6]  Kalina Bontcheva,et al.  A framework for real-time semantic social media analysis , 2017, J. Web Semant..

[7]  Paolo Rosso,et al.  Detecting positive and negative deceptive opinions using PU-learning , 2015, Inf. Process. Manag..

[8]  P. Vigneswara Ilavarasan,et al.  Detection of Spammers in Twitter marketing: A Hybrid Approach Using Social Media Analytics and Bio Inspired Computing , 2017, Information Systems Frontiers.

[9]  Ross Maciejewski,et al.  Visualizing Social Media Sentiment in Disaster Scenarios , 2015, WWW.

[10]  Fredrik Johansson,et al.  Learning to classify emotional content in crisis-related tweets , 2013, 2013 IEEE International Conference on Intelligence and Security Informatics.

[11]  François-Régis Chaumartin,et al.  UPAR7: A knowledge-based system for headline sentiment tagging , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[12]  Osmar R. Zaïane,et al.  Current State of Text Sentiment Analysis from Opinion to Emotion Mining , 2017, ACM Comput. Surv..

[13]  Filippo Menczer,et al.  BotOrNot: A System to Evaluate Social Bots , 2016, WWW.

[14]  Juanle Wang,et al.  Using Social Media to Mine and Analyze Public Sentiment during a Disaster: A Case Study of the 2018 Shouguang City Flood in China , 2019, ISPRS Int. J. Geo Inf..

[15]  Eric K. Ringger,et al.  Pulse: Mining Customer Opinions from Free Text , 2005, IDA.

[16]  Bing Liu,et al.  Opinion spam and analysis , 2008, WSDM '08.

[17]  Emilio Ferrara,et al.  Bots increase exposure to negative and inflammatory content in online social systems , 2018, Proceedings of the National Academy of Sciences.

[18]  Qiang Zhang,et al.  TIARA: a visual exploratory text analytic system , 2010, KDD '10.

[19]  Alexander Serebrenik,et al.  Security and emotion: sentiment analysis of security discussions on GitHub , 2014, MSR 2014.

[20]  Andrew B. Whinston,et al.  Whose and what chatter matters? The effect of tweets on movie sales , 2013, Decis. Support Syst..

[21]  Gang Wang,et al.  The power of comments: fostering social interactions in microblog networks , 2016, Frontiers of Computer Science.

[22]  Lei Shi,et al.  VISA: a visual sentiment analysis system , 2012, VINCI.

[23]  Ghazaleh Beigi,et al.  An Overview of Sentiment Analysis in Social Media and Its Applications in Disaster Relief , 2016, Sentiment Analysis and Ontology Engineering.

[24]  Charu C. Aggarwal,et al.  A Survey of Text Clustering Algorithms , 2012, Mining Text Data.

[25]  Jian Yang,et al.  personality2vec: Enabling the Analysis of Behavioral Disorders in Social Networks , 2020, WSDM.

[26]  Jianqiang Hao,et al.  Social media content and sentiment analysis on consumer security breaches , 2016 .

[27]  Umadevi Sentiment Analysis Using Weka , 2014 .

[28]  Carlos Angel Iglesias,et al.  A framework for fake review detection in online consumer electronics retailers , 2019, Inf. Process. Manag..

[29]  Jacob Ratkiewicz,et al.  Truthy: mapping the spread of astroturf in microblog streams , 2010, WWW.

[30]  Chao Li,et al.  Structural information aware deep semi-supervised recurrent neural network for sentiment analysis , 2015, Frontiers of Computer Science.

[31]  Xianghua Fu,et al.  Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon , 2013, Knowl. Based Syst..

[32]  Aoying Zhou,et al.  Integrating the optimal classifier set for sentiment analysis , 2015, Social Network Analysis and Mining.

[33]  Derek Greene,et al.  Distortion as a validation criterion in the identification of suspicious reviews , 2010, SOMA '10.

[34]  Chih-Hung Wu,et al.  Behavior-based spam detection using a hybrid method of rule-based techniques and neural networks , 2009, Expert Syst. Appl..

[35]  Walaa Medhat,et al.  Combined Algorithm for Data Mining using Association rules , 2014, ArXiv.

[36]  Hamid R. Arabnia,et al.  Improving cyberbullying detection using Twitter users' psychological features and machine learning , 2020, Comput. Secur..

[37]  Jacob Ratkiewicz,et al.  Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams , 2010, ArXiv.

[38]  Walaa Medhat,et al.  Sentiment analysis algorithms and applications: A survey , 2014 .

[39]  Daoud Clarke,et al.  On developing robust models for favourability analysis: Model choice, feature sets and imbalanced data , 2012, Decis. Support Syst..

[40]  Michael S. Bernstein,et al.  Tweets as data: demonstration of TweeQL and Twitinfo , 2011, SIGMOD '11.

[41]  Xu Zhuang,et al.  Enactment of Ensemble Learning for Review Spam Detection on Selected Features , 2019, Int. J. Comput. Intell. Syst..

[42]  Khairullah Khan,et al.  A Review of Machine Learning Algorithms for Text-Documents Classification , 2010 .

[43]  Michael J. Shaw,et al.  Application of Decision-Tree Induction Techniques to Personalized Advertisements on Internet Storefronts , 2001, Int. J. Electron. Commer..

[44]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[45]  Shahliza Abd Halim,et al.  Sentiflood: Process model for flood disaster sentiment analysis , 2017, 2017 IEEE Conference on Big Data and Analytics (ICBDA).

[46]  Huan Liu,et al.  Social Spammer Detection with Sentiment Information , 2014, 2014 IEEE International Conference on Data Mining.

[47]  Shaowen Wang,et al.  Happy or not: Generating topic-based emotional heatmaps for Culturomics using CyberGIS , 2012, 2012 IEEE 8th International Conference on E-Science.

[48]  Joann Cattlin,et al.  Simple online privacy for Australia , 2016, First Monday.

[49]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[50]  Richard Colbaugh,et al.  Estimating the sentiment of social media content for security informatics applications , 2011, Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics.

[51]  Rui Xia,et al.  Ensemble of feature sets and classification algorithms for sentiment classification , 2011, Inf. Sci..

[52]  Michael S. Bernstein,et al.  Twitinfo: aggregating and visualizing microblogs for event exploration , 2011, CHI.

[53]  Liana Ermakova,et al.  Sentiment Classification Based on Phonetic Characteristics , 2013, ECIR.

[54]  Jie Tang,et al.  Analyzing stock market trends using social media user moods and social influence , 2019, J. Assoc. Inf. Sci. Technol..

[55]  Yaxin Bi,et al.  Improved lexicon-based sentiment analysis for social media analytics , 2015, Security Informatics.

[56]  Cecilia R. Aragon,et al.  Analysis and Visualization of Sentiment and Emotion on Crisis Tweets , 2014, CDVE.

[57]  Jitendra Kumar Rout,et al.  Deceptive review detection using labeled and unlabeled data , 2016, Multimedia Tools and Applications.

[58]  Wei Shi,et al.  Sentiment analysis of Chinese microblogging based on sentiment ontology: a case study of ‘7.23 Wenzhou Train Collision’ , 2013, Connect. Sci..

[59]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[60]  Kouichi Sakurai,et al.  A proposal of event study methodology with Twitter sentimental analysis for risk management , 2017, IMCOM.

[61]  J. Fernando Sánchez-Rada,et al.  Enhancing deep learning sentiment analysis with ensemble techniques in social applications , 2020 .

[62]  Qingxi Peng,et al.  Detecting Spam Review through Sentiment Analysis , 2014, J. Softw..

[63]  Sang-Bum Kim,et al.  Effective Methods for Improving Naive Bayes Text Classifiers , 2002, PRICAI.

[64]  Sholom M. Weiss,et al.  Automated learning of decision rules for text categorization , 1994, TOIS.

[65]  Huan Liu,et al.  Sentiment Informed Cyberbullying Detection in Social Media , 2017, ECML/PKDD.

[66]  Finn Årup Nielsen,et al.  A New ANEW: Evaluation of a Word List for Sentiment Analysis in Microblogs , 2011, #MSM.

[67]  Annamalai Narayanan,et al.  Employee profiling via aspect-based sentiment and network for insider threats detection , 2019, Expert Syst. Appl..

[68]  Kyumin Lee,et al.  Uncovering social spammers: social honeypots + machine learning , 2010, SIGIR.

[69]  Barrie Gunter,et al.  Sentiment Analysis: A Market-Relevant and Reliable Measure of Public Feeling? , 2014 .

[70]  Doaa Mohey El Din Mohamed Hussein,et al.  A survey on sentiment analysis challenges , 2016, Journal of King Saud University - Engineering Sciences.

[71]  Yung-Ming Li,et al.  Deriving market intelligence from microblogs , 2013, Decis. Support Syst..

[72]  Huaiqing Wang,et al.  Intelligent agents for adaptive security market surveillance , 2017, Enterp. Inf. Syst..

[73]  Rudy Prabowo,et al.  Sentiment analysis: A combined approach , 2009, J. Informetrics.

[74]  Runyu Chen,et al.  Sentiment Analysis Based Online Restaurants Fake Reviews Hype Detection , 2014, APWeb Workshophs.

[75]  Vidhyacharan Bhaskar,et al.  Mining crisis information: A strategic approach for detection of people at risk through social media analysis , 2018 .

[76]  Seong Joon Yoo,et al.  Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews , 2012, Expert Syst. Appl..

[77]  Shourya Roy,et al.  Fast and accurate text classification via multiple linear discriminant projections , 2003, The VLDB Journal.

[78]  Namita Mittal,et al.  Sentiment Classification of Crisis Related Tweets using Segmentation , 2016, ICIA.

[79]  Michelle L. Gregory,et al.  User-directed Sentiment Analysis: Visualizing the Affective Content of Documents , 2006 .

[80]  Zhaoxia Wang,et al.  Issues of Social Data Analytics with a New Method for Sentiment Analysis of Social Media Data , 2014, 2014 IEEE 6th International Conference on Cloud Computing Technology and Science.

[81]  Kim-Kwang Raymond Choo,et al.  Revisiting Semi-Supervised Learning for Online Deceptive Review Detection , 2017, IEEE Access.

[82]  Julien Velcin,et al.  Sentiment analysis on social media for stock movement prediction , 2015, Expert Syst. Appl..

[83]  Zhaoxia Wang,et al.  Anomaly Detection through Enhanced Sentiment Analysis on Social Media Data , 2014, 2014 IEEE 6th International Conference on Cloud Computing Technology and Science.

[84]  Yang Wang,et al.  Privacy nudges for social media: an exploratory Facebook study , 2013, WWW.

[85]  Ajay Lala,et al.  Sentiment Analysis of English Tweets Using Rapid Miner , 2015, 2015 International Conference on Computational Intelligence and Communication Networks (CICN).

[86]  Kit Yan Chan,et al.  CredSaT: Credibility ranking of users in big social data incorporating semantic analysis and temporal factor , 2018, J. Inf. Sci..

[87]  Bing Liu,et al.  Opinion Mining and Sentiment Analysis , 2011 .

[88]  Aditi Sharan,et al.  Identifying Deceptive Opinion Spam using Aspect-based Emotions and Human Behavior Modeling , 2017 .

[89]  Xiuzhen Zhang,et al.  Anomaly detection in online social networks , 2014, Soc. Networks.

[90]  Sandeep Kumar Singh,et al.  Information Technology and Quantitative Management ( ITQM 2017 ) A Novel User-based Spam Review Detection , 2017 .

[91]  Hai Wang,et al.  Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets , 2013, Neural Computing and Applications.

[92]  Dong Liu,et al.  Sockpuppet gang detection on social media sites , 2015, Frontiers of Computer Science.

[93]  Muhammad Al-Qurishi,et al.  Reputation‐based credibility analysis of Twitter social network users , 2017, Concurr. Comput. Pract. Exp..

[94]  Mingliang Chen,et al.  Building emotional dictionary for sentiment analysis of online news , 2014, World Wide Web.