PyBDA: a command line tool for automated analysis of big biological data sets
暂无分享,去创建一个
[1] Ameet Talwalkar,et al. MLlib: Machine Learning in Apache Spark , 2015, J. Mach. Learn. Res..
[2] Fabian J Theis,et al. SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.
[3] Luca Antiga,et al. Automatic differentiation in PyTorch , 2017 .
[4] Hilde van der Togt,et al. Publisher's Note , 2003, J. Netw. Comput. Appl..
[5] Sahil R. Kalra,et al. Big Challenges? Big Data … , 2015 .
[6] Nick Golding,et al. greta: simple and scalable statistical modelling in R , 2019, J. Open Source Softw..
[7] Sven Rahmann,et al. Genome analysis , 2022 .
[8] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[9] Bernd Bischl,et al. mlr: Machine Learning in R , 2016, J. Mach. Learn. Res..
[10] Francisco Herrera,et al. A comparison on scalability for batch big data processing on Apache Spark and Apache Flink , 2017 .
[11] Shaoliang Peng,et al. Bioinformatics applications on Apache Spark , 2018, GigaScience.
[12] S. Geer,et al. Statistics for big data: A perspective , 2018 .
[13] Martín Abadi,et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.
[14] Reynold Xin,et al. Apache Spark , 2016 .
[15] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[16] Dustin Tran,et al. Edward: A library for probabilistic modeling, inference, and criticism , 2016, ArXiv.
[17] V. Marx. Biology: The big challenges of big data , 2013, Nature.
[18] Avita Katal,et al. Big data: Issues, challenges, tools and Good practices , 2013, 2013 Sixth International Conference on Contemporary Computing (IC3).
[19] Alexis Boukouvalas,et al. GPflow: A Gaussian Process Library using TensorFlow , 2016, J. Mach. Learn. Res..