Electron avalanches. I. Statistics of partial microdischarges in their pre-streamer stage

Three kinds of statistical distributions of DC microdischarges in homogeneous electric field are discussed. So far the exponential and streamer distributions have been considered as regular statistics describing microdischarge electron avalanches with low (n~ 10/sup 8/) average carrier populations, respectively. The distributions of avalanches with intermediate populations n~/spl epsi/(10/sup 5/, 10/sup 8/) that exhibit peculiar convex shapes have not been considered as regular distributions so far. They have been regarded as an experimental artefacts causing deviations from the regular exponential law. On the basis of refined experiments we argue for a new interpretation of those peculiar distribution curves. They have proved to be independent of the remaining two regular statistics and manifest a new distribution law well approximated by the Pareto distribution. The basic physics underlying this separate statistical distribution is intimately related to the inner space charges formed inside the avalanches with higher carrier populations. The inner space charges that modify the local intensity of the electric field and result in redistribution of populations and manifestation of a new statistical behavior.

[1]  H. C. Hall,et al.  Discharge Inception and Extinction in Dielectric Voids , 1954 .

[2]  J. Byrne III.—Statistics of the Electron-Multiplication Process in Proportional Counters , 1962, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[3]  T Ficker On the influence of measuring circuit on a DC partial-discharge repetition rate , 1986 .

[4]  A.E.W. Austen,et al.  Internal discharges in dielectrics: their observation and analysis , 1944 .

[5]  Kulkarni,et al.  Stochastic properties of Trichel-pulse corona: A non-Markovian random point process. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[6]  K. Zuber Über die Verzögerungszeit bei der Funkenentladung , 1925 .

[7]  U. Küchler,et al.  Microdischarges in air-fed ozonizers , 1991 .

[8]  L. Frommhold,et al.  Electron avalanches in oxygen: Detachment from the diatomic ionO2− , 1974 .

[9]  P.C.T. van der Laan,et al.  Fast current measurements for avalanche studies , 1982 .

[10]  R. J. Brunt Water vapor‐enhanced electron‐avalanche growth in SF6 for nonuniform fields , 1986 .

[11]  S. V. Kulkarni,et al.  Influence of a dielectric barrier on the stochastic behaviour of Trichel-pulse corona , 1991 .

[12]  U. Fromm,et al.  Interpretation of partial discharges at dc voltages , 1995 .

[13]  Tzeng,et al.  Stochastic development of an electron avalanche. , 1986, Physical review. A, General physics.

[14]  W. H. Furry On Fluctuation Phenomena in the Passage of High Energy Electrons through Lead , 1937 .

[15]  Lubos Pazdera,et al.  Simplified digital acquisition of microdischarge pulses , 2001 .

[16]  Kouzaburou Nakamura,et al.  Fluctuation Mechanism of D. C. Partial Discharge in Polyethylene and Impulse Noise in Submarine Cable , 1976 .

[17]  G. D. Alkhazov,et al.  Statistics of electron avalanches and ultimate resolution of proportional counters , 1970 .

[18]  T. Lewis,et al.  VARIATIONS IN THE TOWNSEND FIRST IONIZATION COEFFICIENT FOR GASES. , 1966 .

[19]  S. Curran,et al.  LXXXVI. Investigation of soft radiation by proportional counters—V. Use as a detector of ultra-violet quanta and analysis of the gas multiplication process , 1949 .

[20]  K. Richter Die Eigenschaften von Elektronenlawinen bei hohen Verstärkungen in Äther , 1964 .

[21]  Über die Wahrscheinlichkeit der „Kanalbildung“ aus einer großen Elektronenlawine , 1960 .

[22]  Udo Fromm,et al.  Partial Discharges in Gaseous Voids for DC Voltage , 1994 .

[23]  H. Schlumbohm Zur Statistik der Elektronenlawinen im ebenen Feld. III , 1958 .

[24]  L. Frommhold Zur Statistik der Elektronenlawinen im ebenen Feld. II , 1956 .

[25]  R. J. Brunt,et al.  Stochastic properties of partial-discharge phenomena , 1991 .

[26]  F. Paschen,et al.  Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz , 1889 .

[27]  L. Frommhold Eine Untersuchung der Elektronenkomponente von Elektronenlawinen im homogenen Feld II , 1960 .

[28]  T. Lewis,et al.  Townsend's first ionization coefficient for methane and nitrogen , 1966 .

[29]  Fractal statistics of partial discharges with polymeric samples , 1995 .

[30]  H. Schlumbohm Elektronenlawinen in elektronegativen Gasen , 1962 .

[31]  J. Wetzer,et al.  Electron avalanches influenced by detachment and conversion processes , 1988 .

[32]  E. F. Bennett,et al.  ELECTRON MULTIPLICATION PROCESS IN PROPORTIONAL COUNTERS , 1966 .

[33]  W. Legler The influence of the relaxation of the electron energy distribution on the statistics of electron avalanches , 1967 .

[34]  S. Curran,et al.  II. Investigation of soft radiations by proportional counters , 1949 .

[35]  Zoran Falkenstein,et al.  Microdischarge behaviour in the silent discharge of nitrogen - oxygen and water - air mixtures , 1997 .

[36]  R. Wijsman Breakdown Probability of a Low Pressure Gas Discharge , 1949 .

[37]  Michael Hirth,et al.  Ozone synthesis from oxygen in dielectric barrier discharges , 1987 .

[38]  D. J. Skipper,et al.  Gaseous discharge phenomena in high-voltage d.c. cable dielectrics , 1960 .

[39]  L. Frommhold Über verzögerte Elektronen in Elektronenlawinen, insbesondere in Sauerstoff und Luft, durch Bildung und Zerfall negativer Ionen (O-) , 1964 .