Semi-Analytical Estimates for the Orbital Stability of Earth’s Satellites

Normal form stability estimates are a basic tool of Celestial Mechanics for characterizing the long-term stability of the orbits of natural and artificial bodies. Using high-order normal form constructions, we provide three different estimates for the orbital stability of point-mass satellites orbiting around the Earth. (i) We demonstrate the long-term stability of the semimajor axis within the framework of the $$J_2$$ J 2 problem, by a normal form construction eliminating the fast angle in the corresponding Hamiltonian and obtaining $${\mathcal {H}}_{J_2}$$ H J 2 . (ii) We demonstrate the stability of the eccentricity and inclination in a secular Hamiltonian model including lunisolar perturbations (the ‘geolunisolar’ Hamiltonian $${\mathcal {H}}_\mathrm{gls}$$ H gls ), after a suitable reduction of the Hamiltonian to the Laplace plane. (iii) We numerically examine the convexity and steepness properties of the integrable part of the secular Hamiltonian in both the $${\mathcal {H}}_{J_2}$$ H J 2 and $${\mathcal {H}}_\mathrm{gls}$$ H gls models, which reflect necessary conditions for the holding of Nekhoroshev’s theorem on the exponential stability of the orbits. We find that the $${\mathcal {H}}_{J_2}$$ H J 2 model is non-convex, but satisfies a ‘three-jet’ condition, while the $${\mathcal {H}}_\mathrm{gls}$$ H gls model restores quasi-convexity by adding lunisolar terms in the Hamiltonian’s integrable part.

[1]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[2]  Hae-Dong Kim,et al.  Orbit, orbital lifetime, and reentry survivability estimation for orbiting objects , 2018, Advances in Space Research.

[3]  A. Giorgilli Notes on exponential stability of Hamiltonian systems , 2003 .

[4]  L. Chierchia,et al.  On steepness of 3-jet non-degenerate functions , 2019, Annali di Matematica Pura ed Applicata (1923 -).

[5]  Jaedong Seong,et al.  Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal , 2015 .

[6]  Aaron J. Rosengren,et al.  FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS , 2016, 1606.04180.

[7]  Daniel J. Scheeres,et al.  The classical Laplace plane as a stable disposal orbit for geostationary satellites , 2014 .

[8]  S. Lemmens,et al.  Analysing Global Achievements in Orbital Lifetime Reduction at the End of LEO Missions , 2013 .

[9]  Alessandro Rossi,et al.  A frequency portrait of Low Earth Orbits , 2018, Celestial Mechanics and Dynamical Astronomy.

[10]  A. Giorgilli,et al.  Long Time Stability for the Main Problem of Artificial Satellites , 1997 .

[11]  W. M. Kaula Theory of satellite geodesy , 1966 .

[12]  G. Pucacco,et al.  Analytical development of the lunisolar disturbing function and the critical inclination secular resonance , 2015, 1511.03567.

[13]  A. Giorgilli,et al.  Nonconvergence of formal integrals: II. Improved estimates for the optimal order of truncation , 2004 .

[14]  G. Benettin,et al.  Composition of Lie transforms with rigorous estimates and applications to Hamiltonian perturbation theory , 1989 .

[15]  Camilla Colombo,et al.  Towards a sustainable exploitation of the geosynchronous orbital region , 2019, Celestial Mechanics and Dynamical Astronomy.

[16]  Alessandra Celletti,et al.  On the Dynamics of Space Debris: 1:1 and 2:1 Resonances , 2014, J. Nonlinear Sci..

[17]  Z. Knežević,et al.  APPLICATION OF THE NEKHOROSHEV THEOREM TO THE REAL DYNAMICAL SYSTEM , 2008 .

[19]  G. Pucacco,et al.  Dynamical models and the onset of chaos in space debris , 2016, 1612.08849.

[20]  D. Bambusi,et al.  Nekhoroshev theorem for perturbations of the central motion , 2016, 1610.02262.

[21]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[22]  H. Westerman On satellite orbit lifetimes , 1963 .

[23]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[24]  Christoph Lhotka,et al.  (INVITED) Resonances in the Earth's space environment , 2020, Commun. Nonlinear Sci. Numer. Simul..

[25]  M. Guzzo,et al.  Numerical verification of the steepness of three and four degrees of freedom Hamiltonian systems , 2015 .

[26]  B. E. Shute,et al.  The lunar-solar effect on the orbital lifetimes of artificial satellites with highly eccentric orbits. , 1966 .

[27]  J. Pöschel,et al.  Nekhoroshev estimates for quasi-convex hamiltonian systems , 1993 .

[28]  Alessandra Celletti,et al.  Dynamics of Resonances and Equilibria of Low Earth Objects , 2017, SIAM J. Appl. Dyn. Syst..

[29]  Geostationary secular dynamics revisited: application to high area-to-mass ratio objects , 2016, 1611.08916.

[30]  D. King-hele,et al.  Predicting the orbital lifetimes of Earth satellites , 1988 .

[31]  G. Voyatzis,et al.  Dynamical cartography of Earth satellite orbits , 2019, Advances in Space Research.