To appear in the ACM SIGGRAPH conference proceedings Handle-Aware Isolines for Scalable Shape Editing

Handle-based mesh deformation is essentially a nonlinear problem. To allow scalability, the original deformation problem can be approximately represented by a compact set of control variables. We show the direct relation between the locations of handles on the mesh and the local rigidity under deformation, and introduce the notion of handle-aware rigidity. Then, we present a reduced model whose control variables are intelligently distributed across the surface, respecting the rigidity information and the geometry. Specifically, for each handle, the control variables are the transformations of the isolines of a harmonic scalar field representing the deformation propagation from that handle. The isolines constitute a virtual skeletal structure similar to the bones in skinning deformation, thus correctly capturing the low-frequency shape deformation. To interpolate the transformations from the isolines to the original mesh, we design a method which is local, linear and geometry-dependent. This novel interpolation scheme and the transformation-based reduced domain allow each iteration of the nonlinear solver to be fully computed over the reduced domain. This makes the per-iteration cost dependent on only the number of isolines and enables compelling deformation of highly detailed shapes at interactive rates. In addition, we show how the handle-driven isolines provide an efficient means for deformation transfer without full shape correspondence.

[1]  John P. Lewis,et al.  Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation , 2000, SIGGRAPH.

[2]  Ligang Liu,et al.  Mesh editing with curvature flow laplacian operator , 2005 .

[3]  John M. Snyder,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, SIGGRAPH '05.

[4]  O. Sorkine Differential Representations for Mesh Processing , 2006 .

[5]  Ligang Liu,et al.  Dual Laplacian editing for meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[6]  Kun Zhou,et al.  2D shape deformation using nonlinear least squares optimization , 2006, The Visual Computer.

[7]  Michael Gleicher,et al.  Building efficient, accurate character skins from examples , 2003, ACM Trans. Graph..

[8]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[9]  Christian Rössl,et al.  Differential coordinates for interactive mesh editing , 2004, Proceedings Shape Modeling Applications, 2004..

[10]  Christian Rössl,et al.  Harmonic Guidance for Surface Deformation , 2005, Comput. Graph. Forum.

[11]  Kevin G. Der,et al.  Inverse kinematics for reduced deformable models , 2006, SIGGRAPH 2006.

[12]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[13]  Takeo Igarashi,et al.  As-rigid-as-possible shape manipulation , 2005, ACM Trans. Graph..

[14]  Leif Kobbelt,et al.  Real‐Time Shape Editing using Radial Basis Functions , 2005, Comput. Graph. Forum.

[15]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[16]  H. Shum,et al.  Subspace gradient domain mesh deformation , 2006, SIGGRAPH 2006.

[17]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[18]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[19]  Takeo Igarashi,et al.  As-Rigid-As-Possible Shape Manipulation , 2005 .

[20]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[21]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[22]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[23]  Markus H. Gross,et al.  PriMo: coupled prisms for intuitive surface modeling , 2006, SGP '06.

[24]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[25]  Hongbo Fu,et al.  Effective Derivation of Similarity Transformations for Implicit Laplacian Mesh Editing , 2007, Comput. Graph. Forum.

[26]  Wei-Wen Feng,et al.  A fast multigrid algorithm for mesh deformation , 2006, ACM Trans. Graph..

[27]  Doug L. James,et al.  Skinning mesh animations , 2005, ACM Trans. Graph..

[28]  Erik Lindholm,et al.  A user-programmable vertex engine , 2001, SIGGRAPH.

[29]  Daniel Cohen-Or,et al.  Volume and shape preservation via moving frame manipulation , 2007, TOGS.

[30]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[31]  Oscar Kin-Chung Au,et al.  Handle-aware isolines for scalable shape editing , 2007, SIGGRAPH 2007.

[32]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.