Capability Profile of Hard Cutting and Grinding Processes

This keynote paper aims at matching the supply of research results with the industrial demands in hard cutting and grinding. The capability profiles of the processes are characterised and several manufacturing solutions are discussed. The comparison of hard cutting and grinding operations is carried out with regard to certain evaluation criteria based on the functionality of the machined workpiece itself, discussed at different levels, and the process economical efficiency. The basis for a roadmap of future development of hard machining technology is provided, e. g. the main technological developments associated with multi-processing hard machining concepts are given detailed consideration.

[1]  S. Malkin,et al.  Turning of Hardened Steels , 2000 .

[2]  Matthew A. Davies,et al.  On the Dynamics of Chip Formation in Machining Hard Metals , 1997 .

[3]  S. Mittal,et al.  Optimal pre-stressing the surface of a component by superfinish hard turning for maximum fatigue life in rolling contact , 1998 .

[4]  Liam Blunt,et al.  White Layers on Surface of Ground EN24 Steel: 1Microstructure, Composition, Internal Stress, and Corrosion Properties , 1989 .

[5]  Michael E. Fitzpatrick,et al.  The onset of tensile residual stresses in grinding of hardened steels , 2004 .

[6]  G. Byrne,et al.  The mechanisms of chip formation in machining hardened steels , 2002 .

[7]  A. Hamrol,et al.  Turning and grinding as a source of microstructural changes in the surface layer of hardened steel , 2003 .

[8]  Takashi Ueda,et al.  Thermal Behaviour of Cutting Grain in Grinding , 1995 .

[9]  Mofid Mahdi,et al.  Residual stresses in ground components caused by coupled thermal and mechanical plastic deformation , 1999 .

[10]  S. Malkin,et al.  Temperatures and Energy Partition for Grinding with Vitrified CBN Wheels , 1999 .

[11]  Matthew A. Davies,et al.  On Chip Morphology, Tool Wear and Cutting Mechanics in Finish Hard Turning , 1996 .

[12]  Ekkard Brinksmeier,et al.  Determination of the Mechanical and Thermal Influences on Machined Surfaces by Microhardness and Residual Stress Analysis , 1980 .

[13]  Ibrahim Ciftci,et al.  The effect of alloying elements on surface roughness and cutting forces during machining of ductile iron , 2003 .

[14]  S. Pathare,et al.  Development of a Sensor-Integrated “Intelligent” Grinding Wheel for In-Process Monitoring , 1999 .

[15]  Gerry Byrne,et al.  TEM study on the surface white layer in two turned hardened steels , 2002 .

[16]  John Corbett,et al.  High Efficiency Deep Grinding of a Low Alloy Steel with Plated CBN Wheels , 2002 .

[17]  B. Denkena,et al.  Charakterisierung weisser Schichten nach mechanischer und thermischer Einwirkung durch Fertigungsverfahren , 2003 .

[18]  Klaus Weinert,et al.  Hartdrehen als Schruppprozess in Kombination mit Schleifen , 2002 .

[19]  Xuejun Ren,et al.  Cutting temperatures in hard turning chromium hardfacings with PCBN tooling , 2004 .

[20]  Yuebin Guo,et al.  A comparative study of hard turned and cylindrically ground white layers , 2004 .

[21]  Markus M. W. Knuefermann Machining surfaces of optical quality by hard turning , 2003 .

[22]  Berthold Scholtes,et al.  Strukturelle Änderungen bei der Überrollung thermisch vorgeschädigter Wälzelemente , 1994 .

[23]  Ranga Komanduri,et al.  On the mechanics of the grinding process, Part III: thermal analysis of the abrasive cut-off operation , 2004 .

[24]  M. C. Shaw,et al.  Energy Conversion in Cutting and Grinding , 1996 .

[25]  Philip Koshy,et al.  Surface Generation with Engineered Diamond Grinding Wheels: Insights from Simulation , 2003 .

[26]  Hans Kurt Tönshoff,et al.  Process Monitoring in Grinding , 2002 .

[27]  Manfred Weck Moderne Leistungsgetriebe : Verzahnungsauslegung und Betriebsverhalten , 1992 .

[28]  Pawel Pawlus,et al.  Change of cylinder surface topography in the initial stage of engine life , 1997 .

[29]  M. Weck,et al.  Dynamic Behaviour of Cylindrical Traverse Grinding Processes , 2001 .

[30]  W. B. Rowe,et al.  Temperatures in High Efficiency Deep Grinding (HEDG) , 2001 .

[31]  W. König,et al.  Turning versus grinding: a comparison of surface integrity aspects and attainable accuracies , 1993 .

[32]  Hans Kurt Tönshoff,et al.  Cutting of Hardened Steel , 2000 .

[33]  Fu Gang Yan,et al.  Experimental study on hard turning hardened GCr15 steel with PCBN tool , 2002 .

[34]  D. W. Hoeppner,et al.  Effect of Machining Processes on the Fatigue Strength of Hardened AISI 4340 Steel , 1991 .

[35]  H. W. Bergmann,et al.  Stand des Laserstrahlhärtens , 1997 .

[36]  G. Spur,et al.  Handbuch der Fertigungstechnik , 1979 .

[37]  Fukuo Hashimoto,et al.  Surface Integrity Generated by Precision Hard Turning , 1999 .

[38]  G. Byrne,et al.  Chip Formation, Acoustic Emission and Surface White Layers in Hard Machining , 2002 .

[39]  Yuebin Guo,et al.  FE-simulation of the effects of machining-induced residual stress profile on rolling contact of hard machined components , 2004 .

[40]  W. König,et al.  Einfluß von Aufbau und Eigenschaften hochharter nichtmetallischer Schneidstoffe auf Leistung und Verschleiß im Zerspanprozeß mit geometrisch definierter Schneide , 1995 .

[41]  Yan Li,et al.  An Intelligent Multiagent Approach for Selection of Grinding Conditions , 1997 .

[42]  A. Moisan,et al.  Surface integrity in finish hard turning of case-hardened steels , 2003 .

[43]  Bin Lin,et al.  Studies on the surface quality of the unsteady-state grinding technique , 2002 .

[44]  Y. K. Chou,et al.  Tool nose radius effects on finish hard turning , 2004 .

[45]  Klaus Weinert,et al.  Flexible Hartbearbeitung von Futterteilen , 2001 .

[46]  E. Brinksmeler,et al.  Chip Formation Mechanisms in Grinding at Low Speeds , 2003 .

[47]  Yuebin Guo,et al.  Modeling of rolling contact fatigue for hard machined components with process-induced residual stress , 2004 .

[48]  W. Rowe,et al.  Validation of Thermal Properties in Grinding. , 1998 .

[49]  Uwe Heisel,et al.  Process Analysis for the Evaluation of the Surface Formation and Removal Rate in Lapping , 2001 .

[50]  F. Hashimoto,et al.  Forces and Specific Energy in Superfinishing of Hardened Steel , 1997 .

[51]  J. Mayer,et al.  Effect of Grinding Parameters on Surface Finish of Ground Ceramics , 1995 .

[52]  P. V. Rao,et al.  Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding , 2003 .

[53]  Gérard Poulachon,et al.  Wear behavior of CBN tools while turning various hardened steels , 2004 .

[54]  B. J. Griffiths,et al.  Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes , 1987 .

[55]  David Dornfeld,et al.  Application of AE Contact Sensing in Reliable Grinding Monitoring , 2001 .

[56]  Gérard Poulachon,et al.  On modelling the influence of thermo-mechanical behavior in chip formation during hard turning of 100Cr6 bearing steel , 2001 .

[57]  Ekkard Brinksmeier,et al.  Spanende Kurzzeitmetallurgie: Kurzzeitmetallurgische Effekte in der Hartbearbeitung , 1997 .

[58]  Takashi Ueda,et al.  Temperature Measurement of CBN Tool in Turning of High Hardness Steel , 1999 .

[59]  S. Liang,et al.  Predictive modeling of surface roughness in grinding , 2003 .

[60]  Mikel Arizmendi,et al.  Effect of Tool Wear on Roughness in Hard Turning , 2002 .

[61]  Herwart Opitz,et al.  Räumen mit erhöhter Schnittgeschwindigkeit , 1966 .

[62]  Y. Ohbuchi,et al.  Force and Chip Formation in Single-Grit Orthogonal Cutting with Shaped CBN and Diamond Grains , 1991 .

[63]  János Kundrák,et al.  Development and verification of a computer model for thermal distortions in hard turning , 2004 .