Modeling and Design Method for an Adaptive Wind Turbine Blade With Out-of-Plane Twist

[1]  Seung Ki Moon,et al.  Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures , 2014, International Journal of Precision Engineering and Manufacturing-Green Technology.

[2]  Ainuddin Wahid Abdul Wahab,et al.  Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission , 2014 .

[3]  Ali M. Eltamaly,et al.  Maximum power extraction from wind energy system based on fuzzy logic control , 2013 .

[4]  F. Piller,et al.  Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited , 2015 .

[5]  Dongmei Chen,et al.  An Integrated Control and Design Framework for Optimizing Energy Capture and Component Life for a Wind Turbine Variable Ratio Gearbox , 2015 .

[6]  Roger Ohayon,et al.  Twist control of aerodynamic profiles by a reactive method (experimental results) , 2013 .

[7]  Simon Ford,et al.  Additive manufacturing and sustainability: an exploratory study of the advantages and challenges , 2016 .

[8]  Abdolrahman Dadvand,et al.  Aerodynamic shape optimization and analysis of small wind turbine blades employing the Viterna approach for post-stall region , 2016 .

[9]  Fouad Bennis,et al.  A Simplified Morphing Blade for Horizontal Axis Wind Turbines , 2014 .

[10]  Timoleon Kipouros,et al.  Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables , 2014 .

[11]  Michael S. Selig,et al.  Morphing Segmented Wind Turbine Concept , 2010 .

[12]  Martin Kühn,et al.  Combined individual pitch and trailing edge flap control for structural load alleviation of wind turbines , 2016, 2016 American Control Conference (ACC).

[13]  X Munduate,et al.  Three-Dimensional and Rotational Aerodynamics on the NREL Phase VI Wind Turbine Blade , 2007 .

[14]  Asfaw Beyene,et al.  Aero-elastic behavior of a flexible blade for wind turbine application: A 2D computational study , 2010 .

[15]  Milutin Jovanovic,et al.  Generic maximum power point tracking controller for small-scale wind turbines , 2012 .

[16]  Sung Nam Jung,et al.  Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites , 2010 .

[17]  Paul M. Weaver,et al.  Review of morphing concepts and materials for wind turbine blade applications , 2013 .

[18]  Hachimi Fellouah,et al.  Application of the Blade Element Momentum Theory to Design Horizontal Axis Wind Turbine Blades , 2018 .

[19]  Paul M. Weaver,et al.  Design and testing of a deformable wind turbine blade control surface , 2012 .

[20]  Barry Berman,et al.  3D printing: the new industrial revolution , 2012, IEEE Engineering Management Review.

[21]  M. Tahani,et al.  Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions , 2017 .

[22]  Lucas I. Lago,et al.  The adaptive-blade concept in wind-power applications , 2014 .

[23]  David W. Rosen,et al.  Design for Additive Manufacturing , 2015, Additive Manufacturing Technologies.

[24]  Jungwon Yoon,et al.  Power capture optimization of variable-speed wind turbines using an output feedback controller , 2016 .

[25]  Martin Otto Laver Hansen,et al.  Aerodynamics of Wind Turbines , 2001 .

[26]  Peter Fuglsang,et al.  Site-Specific Design Optimization of 1.5–2.0 MW Wind Turbines , 2001 .

[27]  Kyo-Beum Lee,et al.  An Improved Maximum Power Point Tracking Method for Wind Power Systems , 2012 .

[28]  Giacomo Frulla,et al.  A variable twist blade concept for more effective wind generation: design and realization , 2016 .

[29]  Giacomo Frulla,et al.  Wind Generator Innovative Blade Design: Variable Twist and Start-Up Control , 2016 .

[30]  Christian Oliver Paschereit,et al.  Active Aerodynamic Control of Wind Turbine Blades with High Deflection Flexible Flaps , 2010 .