p-Moment stability of stochastic differential equations with impulsive jump and Markovian switching

This paper introduces some new concepts of p-moment stability for stochastic differential equations with impulsive jump and Markovian switching. Some stability criteria of p-moment stability for stochastic differential equations with impulsive jump and Markovian switching are obtained by using Liapunov function method. An example is also discussed to illustrate the efficiency of the obtained results.

[1]  H. Chizeck,et al.  Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control , 1990 .

[2]  M. Mariton,et al.  Jump Linear Systems in Automatic Control , 1992 .

[3]  Y. P. Zhang,et al.  Stability analysis of impulsive control systems , 2003 .

[4]  Dong Han,et al.  p-Moment stability of stochastic differential equations with jumps , 2004, Appl. Math. Comput..

[5]  Gopal K. Basak,et al.  Stability of a Random diffusion with linear drift , 1996 .

[6]  Tao Yang,et al.  Impulsive control , 1999, IEEE Trans. Autom. Control..

[7]  B. Øksendal Stochastic Differential Equations , 1985 .

[8]  Katrin Rohlf,et al.  Impulsive control of a Lotka-Volterra system , 1998 .

[9]  Tao Yang,et al.  Impulsive Systems and Control: Theory and Applications , 2001 .

[10]  X. Mao Stability of stochastic differential equations with Markovian switching , 1999 .

[11]  Kenneth J. Hochberg Hierarchically Structured Branching Populations with Spatial Motion , 1995 .

[12]  A. Skorokhod Asymptotic Methods in the Theory of Stochastic Differential Equations , 2008 .

[13]  Shengyuan Xu,et al.  Robust H∞ filtering for uncertain Markovian jump systems with mode-dependent time delays , 2003, IEEE Trans. Autom. Control..

[14]  Qidi Wu,et al.  Less conservative conditions for asymptotic stability of impulsive control systems , 2003, IEEE Trans. Autom. Control..

[15]  Xinzhi Liu,et al.  Impulsive Stabilization and Applications to Population Growth Models , 1995 .

[16]  José Claudio Geromel,et al.  Output feedback control of Markov jump linear systems in continuous-time , 2000, IEEE Trans. Autom. Control..

[17]  Alim P. C. Gonçalves,et al.  The H2-control for jump linear systems: cluster observations of the Markov state , 2002, Autom..

[18]  José Claudio Geromel,et al.  Continuous-time state-feedback H2-control of Markovian jump linear systems via convex analysis , 1999, Autom..