Dynamical systems on infinitely sheeted Riemann surfaces

This paper is part of a program that aims to understand the connection between the emergence of chaotic behaviour in dynamical systems in relation with the multi-valuedness of the solutions as functions of complex time �. In this work we consider a family of systems whose solutions can be expressed as the inversion of a single hyperelliptic integral. The associated Riemann surface R ! C = {�} is known to be an infinitely sheeted covering of the complex time plane, ramified at an infinite set of points whose projection in the �-plane is dense. The main novelty of this paper is that the geometrical structure of these infinitely sheeted Riemann surfaces is described in great detail, which allows to study global properties of the flow such as asymptotic behaviour of the solutions, periodic orbits and their stability or sensitive dependence on initial conditions. The results are then compared with a numerical integration of the equations of motion. Following the recent approach of Calogero, the real time trajectories of the system are given by paths on R that are projected to a circle on the complex plane �. Due to the branching of R, the solutions may have different periods or may not be periodic at all.

[1]  Herbert Lange,et al.  Complex Abelian Varieties , 1992 .

[2]  Sophie Kowalevski Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe , 1890 .

[3]  Michael Tabor,et al.  Analytic structure of the Lorenz system , 1981 .

[4]  H. Flaschka A remark on integrable Hamiltonian systems , 1988 .

[5]  Francesco Calogero,et al.  Periodic solutions of a many-rotator problem in the plane , 2001 .

[6]  Yu. Fedorov,et al.  On the Weak Kowalevski–Painlevé Property for Hyperelliptically Separable Systems , 2000 .

[7]  M. Tabor,et al.  Integrating the nonintegrable: analytic structure of the Lorenz system revisited , 1988 .

[8]  Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve μ2 = νn - 1, n ∈ Z: Ergodicity, isochrony and fractals , 2006, nlin/0607031.

[9]  T. Bountis,et al.  On the connection between hyperelliptic separability and Painlevé integrability , 2001 .

[10]  Alfred Ramani,et al.  The Painlevé property and singularity analysis of integrable and non-integrable systems , 1989 .

[11]  P. Vanhaecke Integrable systems and symmetric products of curves , 1994, solv-int/9402002.

[12]  A. Fokas,et al.  Order and the ubiquitous occurrence of chaos , 1996 .

[13]  M. Tabor,et al.  The analytic structure of dynamical systems and self-similar natural boundaries☆ , 1983 .

[14]  Yuri N. Fedorov,et al.  Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians , 2001 .

[15]  George F. Corliss,et al.  Ratio-Like and Recurrence Relation Tests for Convergence of Series , 1980 .

[16]  I. Percival,et al.  On nonintegrable systems with square root singularities in complex time , 1991 .

[17]  B. Gambier,et al.  Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .

[18]  J. Françoise,et al.  Periodic Solutions of a Many-Rotator Problem in the Plane. II. Analysis of Various Motions , 2003, nlin/0310047.

[19]  L. Bates,et al.  Complete integrability beyond Liouville-Arnol'd , 2005 .

[20]  B. Dorizzi,et al.  Painlevé Conjecture Revisited , 1982 .

[21]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[22]  I. Percival,et al.  Non-integrable systems with algebraic singularities in complex time , 1991 .

[23]  E. Belokolos,et al.  Reduction of Abelian Functions and Algebraically Integrable Systems. II , 2002 .

[24]  J. Françoise,et al.  Periodic Motions Galore: How to Modify Nonlinear Evolution Equations so that They Feature a Lot of Periodic Solutions , 2002, math/0210120.

[25]  Victor Z. Enolskii,et al.  Double Pendulum and θ -Divisor , 2003, J. Nonlinear Sci..

[26]  M. Tabor,et al.  Analytic structure of the Henon–Heiles Hamiltonian in integrable and nonintegrable regimes , 1982 .

[27]  Oskar Bolza,et al.  On Binary Sextics with Linear Transformations into Themselves , 1887 .

[28]  Sophie Kowalevski,et al.  Sur le probleme de la rotation d'un corps solide autour d'un point fixe , 1889 .

[29]  F. Calogero,et al.  Periodic Solutions of a System of Complex ODEs. II. Higher Periods , 2002, nlin/0306034.

[30]  S. Novikov,et al.  Topology of the Generic Hamiltonian Foliations on the Riemann Surface , 2005 .